Advertisement

Communications in Mathematical Physics

, Volume 5, Issue 5, pp 317–323 | Cite as

Statistical mechanics of lattice systems

  • G. Gallavotti
  • S. Miracle-Sole
Article

Abstract

We study the thermodynamic limit for a classical system of particles on a lattice and prove the existence of infinite volume correlation functions for a “large” set of potentials and temperatures.

Keywords

Neural Network Statistical Physic Correlation Function Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, C. N., andT. D. Lee: Phys. Rev.87, 404 (1952).Google Scholar
  2. 2.
    Ruelle, D.: Helv. Phys. Acta36, 183 (1963).Google Scholar
  3. 3.
    Fisher, M. E.: Arch. Rat. Mech. Anal.17, 377 (1964).Google Scholar
  4. 4.
    Griffiths, R.: J. Math. Phys.5, 1215 (1964).Google Scholar
  5. 5.
    Dobrushin, R. L.: Teoriya Veroyatnostei i ee Primeneniya9, 626 (1964).Google Scholar
  6. 6.
    van Hove, L.: Physica15, 951 (1949).Google Scholar
  7. 7.
    Robinson, D., andD. Ruelle: Commun. math. Phys.5, 288 (1967).Google Scholar
  8. 8.
    Fisher, M. E.: J. Math. Phys.6, 1643 (1965).Google Scholar
  9. 9.
    Bourbaki, N.: Topologie générale, fascicule des resultats. §1, 17. Paris: Hermann 1953.Google Scholar
  10. 10.
    Dunford, N., andJ. Schwartz: Linear operators. V. 9.8. New York: Interscience 1958.Google Scholar
  11. 11.
    —— —— Linear operators. II.4.7; II.4.9. New York: Interscience 1958.Google Scholar
  12. 12.
    —— —— Linear operators. III.11.27. New York: Interscience 1958.Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • G. Gallavotti
    • 1
  • S. Miracle-Sole
    • 1
  1. 1.Institut des Hautes Etudes Scientifiques91. Bures-sur-YvetteFrance

Personalised recommendations