Communications in Mathematical Physics

, Volume 35, Issue 4, pp 321–346 | Cite as

Higher order perturbation theory of exponential Lagrangians: Fourth order

  • K. Pohlmeyer


We define the vacuum expectation value of the time-ordered product of four exponentials of free massless scalar fields as a continuous linear functional over a suitable test function space using minimal singularity as a criterion.


Neural Network Perturbation Theory Scalar Field Function Space Fourth Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lehmann, H., Pohlmeyer, K.: Commun. math. Phys.20, 101 (1971)Google Scholar
  2. 2.
    Pohlmeyer, K.: Commun. math. Phys.26, 130 (1972)Google Scholar
  3. 3.
    Daniel, M., Mitter, P. K.: Math. Phys.13, 1026 (1972)Google Scholar
  4. 4.
    Volkov, M. K.: JINR preprint E-2-6728 Dubna (1972)Google Scholar
  5. 5.
    Bogoliubov, N. N., Shirkov, D. V.: Introduction to the theory of quantized fields: New York: Interscience Publishers, Ltd. 1959Google Scholar
  6. 6.
    Jaffe, A.: Phys. Rev.158, 1454 (1967) and unpublished manuscriptGoogle Scholar
  7. 7.
    Speer, E. R.: J. Math. Phys.9, 1404 (1968)Google Scholar
  8. 8.
    Gelfand, I. M., Schilow, G. E.: Verallgemeinerte Funktionen (Distributionen). Berlin: VEB Deutscher Verlag der Wissenschaften 1960Google Scholar
  9. 9.
    Efimov, G. V.: Commun. math. Phys.7, 138 (1968)Google Scholar
  10. 10.
    Pohlmeyer, K.: DESY Report 73/53Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • K. Pohlmeyer
    • 1
    • 2
  1. 1.Instituto de FisicaUniversidade Federal do Rio Grande do SulPôrto Alegre RSBrazil
  2. 2.II. Institut für Theoretische Physik der Universität HamburgFederal Republic of Germany

Personalised recommendations