Communications in Mathematical Physics

, Volume 5, Issue 3, pp 157–190 | Cite as

Analytic continuation of group representations-V

  • Robert Hermann


The connection between analytic continuation of group representations and analytic continuation of their matrix elements is discussed, together with some related problems concerning the group-theoretic nature of theS-matrix, and the asymptotic behavior of the special functions of mathematical physics.


Neural Network Statistical Physic Matrix Element Complex System Asymptotic Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bruhat, F.: Sur les représentations induites des groupes de Lie. Bull. Soc. Math. France84, 97–205 (1956).Google Scholar
  2. [2]
    Dashen, R, andM. Gell-Mann: Proceedings of the third coral gables conference on symmetry principles. San Francisco: W. H. Freeman.Google Scholar
  3. [3]
    van Est, W.: Group cohomology and Lie algebra cohomology in Lie groups. Nederl. Akad. Wetensch. Proc. Ser. A.56, 484–493, 493–504 (1953).Google Scholar
  4. [4]
    Foldy, L. L.: Relativistic particle systems with interaction. Phys. Rev.122, 275–278 (1961).Google Scholar
  5. [5]
    Freedman, D., andJ. M. Wang: Regge poles and unequal mass scattering processes. Phys. Rev. Letters17, 569 (1966).Google Scholar
  6. [6]
    Furstenberg, H.: A Poisson formula for semisimple Lie groups. Ann. Math.77, 335–386 (1963).Google Scholar
  7. [7]
    Gelfand, I. M., andN. J. Vilenkin: Generalized functions, Vol. 4. New York: Academic Press 1964.Google Scholar
  8. [8]
    Goldberger, M. L., andC. E. Jones: Consistency question raised by simultaneous Mandelstam and angular momentum analyticity. Phys. Rev. Letters17, 105 (1966).Google Scholar
  9. [9]
    Hadjiannou, F.: On the use of imaginary mass representation of the Poincaré group in scattering amplitudes. Nuovo Cimento44a, 185 (1966).Google Scholar
  10. [10]
    Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press 1962.Google Scholar
  11. [11]
    Hermann, R.: Lie groups for physicists. New York: N. A. Benjamin Press 1966.Google Scholar
  12. [12]
    —— Analytic continuation of group representations. Comm. Math. Phys. Part I,2, 251–270 (1966); Part II,3, 53–74 (1966); Part III,3, 75–97 (1966).Google Scholar
  13. [13]
    Inonu, E., andE. P. Wigner: On the contraction of groups and their representation. Proc. Nat. Acad. Sci.39, 510–524 (1953).Google Scholar
  14. [14]
    Kurosh, A.: The theory of groups. New York: Chelsea Publishing Company 1955.Google Scholar
  15. [15]
    Nelson, E.: Analytic vectors. Ann. Math.70, 572–615 (1959).Google Scholar
  16. [16]
    Nijenhuis, A., andR. Richardson: Deformation of homomorphisms of Lie groups and Lie algebras. Bull. Am. Math. Soc. (To be published).Google Scholar
  17. [17]
    Roffman, E.: Complex inhomogeneous Lorentz group and complex angular momentum. Phys. Rev. Letters.16, 210 (1966).Google Scholar
  18. [18]
    Stein, E. M., andS. Wainger: Analytic properties of expansions and some variants of the Parseval-Plancherel formula. Arkiv Matematik,5, 553–566 (1964).Google Scholar
  19. [19]
    Toller, M.: Nuovo Cimento37, 631 (1965).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Robert Hermann
    • 1
  1. 1.Stanford Linear Accelerator CenterStandford

Personalised recommendations