Communications in Mathematical Physics

, Volume 8, Issue 4, pp 300–314 | Cite as

On partial weakly clustering states with an application to the Ising model

  • G. G. Emch
  • H. J. F. Knops
  • E. J. Verboven


The concept of partial weak clustering in the mean is defined for states on physical systems which admit amenable (semi-)groups of symmetries. The properties of partial weak clustering states are studied and the relations between these states and (extremal) invariant (partial) states are considered. As an application we discuss the zero field magnetization in the two-dimensional Ising model.


Field Magnetization Neural Network Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Emch, G. G., H. J. F. Knops, andE. J. Verboven: Commun. Math. Phys.7, 164–172 (1968).Google Scholar
  2. 2.
    Montroll, E. W., R. B. Potts, andJ. C. Ward: J. Math. Phys.4, 308 (1963).Google Scholar
  3. 3.
    Yang, C. N.: Phys. Rev.85, 808 (1952).Google Scholar
  4. 4.
    Schultz, T. D., D. C. Mattis, andE. H. Lieb: Rev. Mod. Phys.36, 856 (1964).Google Scholar
  5. 5.
    Day, M. M.: Bull. Am. Math. Soc.55, 1054 (1949).Google Scholar
  6. 6.
    von Neumann, J.: Fundamenta Math.13, 73 (1929); Compositio Math.1, 106 (1934).Google Scholar
  7. 7.
    Day, M. M.: Illinois J. Math.1, 509 (1957).Google Scholar
  8. 8.
    Dixmier, J.: Acta Sci. Math. Szeged12, Pars A, 213 (1950).Google Scholar
  9. 9.
    Pier, J. P.: Thèse de 3ième cycle, Nancy 1965.Google Scholar
  10. 10.
    Doplicher, S., R. V. Kadison, D. Kastler, andD. W. Robinson: Commun. Math. Phys.6, 101 (1967).Google Scholar
  11. 11.
    Kadison, R. V.: Topology3, Suppl. 2, 177 (1965).Google Scholar
  12. 12.
    Dixmier, J.: LesC*-algèbres et leurs représentations. Paris: Gauthier Villars 1964.Google Scholar
  13. 13.
    Kastler, D., andD. W. Robinson: Commun. Math. Phys.3, 151 (1966).Google Scholar
  14. 14.
    Ruelle, D.: Commun. Math. Phys.3, 133 (1966).Google Scholar
  15. 15.
    Lanford, O., andD. Ruelle: J. Math. Phys.8, 1460 (1967).Google Scholar
  16. 16.
    Doplicher, S., D. Kastler, andD. W. Robinson: Commun. Math. Phys.3, 1 (1966).Google Scholar
  17. 17.
    Robinson, D., andD. Ruelle: Extremal invariant states, preprint IHES, 1966.Google Scholar
  18. 18.
    Dunford, N., andJ. T. Schwartz: Linear operators. New York: Interscience Publ. 1958.Google Scholar
  19. 19.
    For an account of the esoteric character of Onsager's revelation the reader is referred to the introduction of MPW [2].Google Scholar
  20. 20.
    Lee, T. D., andC. N. Yang: Phys. Rev.87, 410 (1952).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • G. G. Emch
    • 1
  • H. J. F. Knops
    • 2
  • E. J. Verboven
    • 2
  1. 1.Department of Physics and AstronomyThe University of RochesterUSA
  2. 2.Instituut voor theoretische FysikaUniversiteit NijmegenThe Netherlands

Personalised recommendations