Communications in Mathematical Physics

, Volume 31, Issue 3, pp 209–242 | Cite as

Tilted homogeneous cosmological models

  • A. R. King
  • G. F. R. Ellis


We examine spatially homogeneous cosmological models in which the matter content of space-time is a perfect fluid, and in which the fluid flow vector is not normal to the surfaces of homogeneity. In such universes, the matter may move with non-zero expansion, rotation and shear; we examine the relation between these kinematic quantities and the Bianchi classification of the symmetry group. Detailed characterizations of some of the simplest such universe models are given.


Neural Network Statistical Physic Complex System Fluid Flow Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ellis, G. F. R., MacCallum, M. A. H.: Commun. math. Phys.12, 108 (1969).Google Scholar
  2. 2.
    MacCallum, M. A. H., Ellis, G. F. R.: Commun. math. Phys.19, 31 (1970).Google Scholar
  3. 3.
    MacCallum, M. A. H.: Commun. math. Phys.20, 57 (1971).Google Scholar
  4. 4.
    Heckmann, O., Schücking, E.: Relativistic Cosmology, in Gravitation, ed. L. Witten 438. New York: Wiley 1962.Google Scholar
  5. 5.
    Estabrook, F. B., Wahlquist, H. D., Behr, C. G.: J. Math. Phys.9, 497 (1968).Google Scholar
  6. 6.
    Ozsváth, I.: J. Math. Phys.11, 2860 (1970).Google Scholar
  7. 7.
    Ehlers, J.: Akad. Wiss. u. Lit. (Mainz), Abh. Math. Nat. Kl. No 11 (1961).Google Scholar
  8. 8.
    Ellis, G. F. R.: Relativistic Cosmology, in General Relativity and Cosmology, ed. R. K. Sachs, XLVII Enrico Fermi Summer School proceedings 104. New York: Academic Press 1971.Google Scholar
  9. 9.
    Schouten, J. A.: Ricci Calculus. Berlin-Göttingen-Heidelberg: Springer 1954.Google Scholar
  10. 10.
    Schmidt, B. G.: article in proceedings of Banff Summer School, 1972.Google Scholar
  11. 11.
    Gödel, K.: Proc. Int. Math. Cong. (Camb., Mass)1, 175, (Am. Math. Soc. Providence), (1952).Google Scholar
  12. 12.
    Ellis, G. F. R.: J. Math. Phys.8, 1171 (1967).Google Scholar
  13. 13.
    Stewart, J. M., Ellis, G. F. R.: J. Math. Phys.9, 1072 (1968).Google Scholar
  14. 14.
    Ozsváth, I.: J. Math. Phys.12, 1078 (1971).Google Scholar
  15. 15.
    Collins, C. B., Hawking, S. W.: Astrophys. J.180, 317 (1973).Google Scholar
  16. 16.
    Farnsworth, D. L.: J. Math. Phys.8, 2315 (1967).Google Scholar
  17. 17.
    Demianski, M., Grischuk, L. P.: Commun. math. Phys.25, 233 (1972).Google Scholar
  18. 18.
    Hawking, S. W.: Mon. Not. Roy. Ast. Soc.142, 129 (1969).Google Scholar
  19. 19.
    Matzner, R. A.: Astrophys. J.157, 1085 (1969).Google Scholar
  20. 20.
    Shepley, L.: Ph. D. Thesis, Princeton University (1965); Proc. Nat. Acad. Sci.52, 1403 (1964).Google Scholar
  21. 20 a.
    Matzner, R. A., Shepley, L. C., Warren, J. A.: Ann. Phys. (N. Y.)57, 401 (1970).Google Scholar
  22. 21.
    Matzner, R. A.: J. Math. Phys.11, 2432 (1970);13, 931 (1972); Ann. Phys. (N.Y.)65, 438, 482 (1971).Google Scholar
  23. 21 a.
    Matzner, R. A., Chitre, D. M.: Commun. math. Phys.22, 173 (1971).Google Scholar
  24. 21 b.
    Matzner, R. A., Misner, C. W.: Astrophys. J.171, 415, 433 (1972).Google Scholar
  25. 22.
    Ryan, M. P.: J. Math. Phys.10, 1724 (1969); Ann. Phys.65, 506 (1971);68, 541 (1971);70, 301 (1972).Google Scholar
  26. 23.
    Belinskii, V. A., Khalatnikov, I. M., Lifshitz, E. M.: Z.E.T.F.60, 1969 (1971).Google Scholar
  27. 23 a.
    Grischuk, L. P., Doroshkevich, A. G., Lukash, V. N.: Z.E.T.F.61, 3 (1971).Google Scholar
  28. 24.
    Grischuk, L. P., Doroshkevich, A. G., Novikov, I. D.: Z.E.T.F.55, 2281 (1968); (Sov. Phys. J.E.T.P.28, 1214 (1969)).Google Scholar
  29. 25.
    Ruzmaikina, T. V., Ruzmaikin, A. A.: Z.E.T.F.56, 1742 (1969); (Sov. Phys. J.E.T.P.29, 934 (1969)).Google Scholar
  30. 26.
    Ozsváth, I.: J. Math. Phys.6, 590 (1965).Google Scholar
  31. 27.
    Farnsworth, D. L., Kerr, R. P.: J. Math. Phys.7, 1625 (1966).Google Scholar
  32. 28.
    Schücking, E.: Naturwissen.19, 507 (1957).Google Scholar
  33. 29.
    Banerji, S.: Prog. Theor. Phys.39, 365 (1968).Google Scholar
  34. 30.
    Ozsváth, I., Schücking, E.: Ann. Phys. (N.Y.),55, 166 (1969).Google Scholar
  35. 31.
    Gödel, K.: Rev. Mod. Phys.21, 447 (1949).Google Scholar
  36. 32.
    King, A. R.: Ph. D. Thesis, University of Cambridge, in preparation.Google Scholar
  37. 33.
    Kantowski, R., Sachs, R. K.: J. Math. Phys.7, 443 (1966).Google Scholar
  38. 34.
    Taub, A. H.: Proceedings of the 1967 Colloque on «Fluids et champ gravitationnel en relativité générale», No. 170, 57, Paris: Centre National de la Recherche Scientifique (1969).Google Scholar
  39. 35.
    MacCallum, M. A. H., Taub, A. H.: Commun. math. Phys.25, 173 (1972).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • A. R. King
    • 1
  • G. F. R. Ellis
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations