Advertisement

Communications in Mathematical Physics

, Volume 31, Issue 3, pp 191–208 | Cite as

Decrease properties of truncated correlation functions and analyticity properties for classical lattices and continuous systems

  • M. Duneau
  • D. Iagolnitzer
  • B. Souillard
Article

Abstract

We present and discuss some physical hypotheses on the decrease of truncated correlation functions and we show that they imply the analyticity of the thermodynamic limits of the pressure and of all correlation functions with respect to the reciprocal temperature β and the magnetic fieldh (or the chemical potential μ) at all (real) points (β0,h0) (or (β0, μ0)) where they are supposed to hold. A decrease close to our hypotheses is derived in certain particular situations at the end.

Keywords

Neural Network Statistical Physic Correlation Function Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lebowitz, J. L.: Commun. math. Phys.28 (4), 313–321 (1972).Google Scholar
  2. 2.
    Ruelle, D.: Statistical mechanics, rigourous results, pp. 90–92. New York: Benjamin 1969.Google Scholar
  3. 3.
    Ruelle, D.: Statistical mechanics, rigourous results, p. 100. New York: Benjamin 1969.Google Scholar
  4. 4.
    Iagolnitzer, D., Stapp, H. P.: Commun. math. Phys.14, 15–55 (1969); Iagolnitzer, D.: Introduction toS-matrix theory (to the published).Google Scholar
  5. 5.
    Fisher, M. E.: Physical Rev.162, 475 (1967).Google Scholar
  6. 5a.
    Camp, W. J., Fisher, M. E.: Phys. Rev. B, August 1, (1972).Google Scholar
  7. 5b.
    Marinaro, M., Sewell, G. L.: Commun. math. Phys.24, 310 (1972).Google Scholar
  8. 5c.
    Minlos, R. A., Sinai, J. G.: Investigations of the spectra of some stochastic operators arising in the lattice gas models. Teor. i Matem. Fizika2 (2), 230 (1970) (russian).Google Scholar
  9. 6.
    We owe the ideas of this subsection to D. Ruelle.Google Scholar
  10. 7.
    We owe this elegant proof to C. Billionnet and C. DeCalan.Google Scholar
  11. 8.
    Arguments about this point have been given to us by D. Ruelle.Google Scholar
  12. 9.
    Lebowitz, J. L., Martin-Löf, A.: Commun. math. Phys.25, 276 (1972).Google Scholar
  13. 10.
    Dobrushin, R. I.: Gibbsian random fields for lattice systems with pairwise interactions. Funktsional'. Analiz i Ego Prilozhen,2 (4), 31 (1968) (russian).Google Scholar
  14. 11.
    Ruelle, D.: Statistical mechanics, rigourous results. New York: Benjamin 1969.Google Scholar
  15. 12.
    For Vitali's theorem see for instance: Goluzin, G. M.: Geometrical theory of functions of a complex variable, p. 18. AMS, Providence, Rhode Island 1969.Google Scholar
  16. 13.
    For Hartog's theorem see for instance: Bochner, S., Martin, W. T.: Several complex variables. Princeton 1948, VII, 4, Th. 4.Google Scholar
  17. 14.
    Lebowitz, J. L., Penrose, O.: Commun. math. Phys.11, 99 (1968).Google Scholar
  18. 15.
    See for instance Camp, W. J., Fisher, M. E.: Phys. Rev. B,6 (2), 946 (1972) where references to the transfer matrix formalism will be found.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • M. Duneau
    • 1
  • D. Iagolnitzer
    • 2
  • B. Souillard
    • 3
  1. 1.Centre de Physique Théorique, Ecole PolytechniqueParis
  2. 2.Service de Physique ThéoriqueCentre d'Etudes Nucléaires de SaclayGif-sur-YvetteFrance
  3. 3.Centre de Physique Théorique, Ecole PolytechniqueParisFrance

Personalised recommendations