Advertisement

Communications in Mathematical Physics

, Volume 37, Issue 4, pp 335–341 | Cite as

A family of Jordan-Brans-Dicke Kerr solutions

  • C. B. G. McIntosh
Article

Abstract

A family of solutions of the vacuum Jordan-Brans-Dicke or scalar-tensor gravitational field equations is given. This family reduces to the Kerr rotating solution of the vacuum Einstein equations when the scalar field is constant. The family does not have spherical symmetry when the rotation is zero and the scalar field is not constant. The method used to generate the new solutions can also be used to obtain vacuum Jordan-Brans-Dicke solutions from any given vacuum stationary, axisymmetric solution.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Scalar Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heckmann, O., Jordan, P., Fricke, W.: Astrophys. Zeitschr.28, 113–149 (1951)Google Scholar
  2. 2.
    Brans, C. H.: Phys. Rev.125, 2194–2201 (1962)Google Scholar
  3. 3.
    Janis, A. I., Newman, E. T., Winicour, J.: Phys. Rev. Letters20, 878–880 (1968)Google Scholar
  4. 4.
    Winicour, J., Janis, A. I., Newman, E. T.: Phys. Rev.176, 1507–1513 (1968)Google Scholar
  5. 5.
    Nariai, H.: Progr. Theoret. Phys. (Kyoto)42, 742–744 (1969)Google Scholar
  6. 6.
    Matsuda, T.: Progr. Theoret. Phys. (Kyoto)47, 738–740 (1972)Google Scholar
  7. 7.
    Buchdahl, H. A.: Nuovo Cim.12B, 269–287 (1972)Google Scholar
  8. 8.
    Luke, S. K., Szamosi, G.: Phys. Rev. D.6, 3359–3363 (1972)Google Scholar
  9. 9.
    Hawking, S. W.: Commun. math. Phys.25, 167–171 (1972)Google Scholar
  10. 10.
    Johnson, M.: Lett. Nuovo Cimento4, 323–327 (1972)Google Scholar
  11. 11.
    Thorne, K. S., Dykla, J. J.: Ap. J.166, L35-L38 (1971)Google Scholar
  12. 12.
    Brans, C. H., Dicke, R. H.: Phys. Rev.124, 925–935 (1961)Google Scholar
  13. 13.
    Penney, R.: Phys. Rev.174, 1578–1579 (1968)Google Scholar
  14. 14.
    Dicke, R. H.: Phys. Rev.125, 2163–2167 (1962)Google Scholar
  15. 15.
    Chandrasekhar, S., Friedman, J. L.: Ap. J.175, 379–405 (1972)Google Scholar
  16. 16.
    Synge, J. L.: Relativity: The general theory, pp. 309–312. Amsterdam: North-Holland Publishing Co., 1966Google Scholar
  17. 17.
    Boyer, R. H., Linquist, R. W.: J. Math. Phys.8, 265–281 (1967)Google Scholar
  18. 18.
    Geroch, R.: J. Math. Phys.12, 918–924 (1971)Google Scholar
  19. 19.
    Geroch, R.: J. Math. Phys.13, 394–404 (1972)Google Scholar
  20. 20.
    Buchdahl, H. A.: Int. J. Theor, Phys.6, 407–412 (1972)Google Scholar
  21. 21.
    Sneddon, G. E., McIntosh, C. B. G.: Aust. J. Phys.27, 411–416 (1974)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • C. B. G. McIntosh
    • 1
  1. 1.Mathematics DepartmentMonash UniversityClaytonAustralia

Personalised recommendations