Communications in Mathematical Physics

, Volume 37, Issue 4, pp 273–286 | Cite as

Some applications of dilatation invariance to structural questions in the theory of local observables

  • John E. Roberts


In a dilatation-invariant theory it is shown that there is a unique locally normal dilatation-invariant state. Furthermore a gauge transformation of a local algebra cannot be implemented by a unitary operator from the local algebra. If the local field algebras are factors then so are the local observable algebras. The superselection structure of the theory can be determined locally.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Gauge Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gell-Mann, M., Low, F. E.: Phys. Rev.95, 1300–1312 (1954)Google Scholar
  2. 2.
    Dell'Antonio, G. F.: J. Math. Phys.12, 148–156 (1971)Google Scholar
  3. 3.
    Wightman, A. S.: Ann. Inst. Henri Poincaré1, 403–420 (1964)Google Scholar
  4. 4.
    Doplicher, S., Haag, R., Roberts, J. E.: Commun. math. Phys.13, 1–23 (1969)Google Scholar
  5. 5.
    Buchholz, D.: Commun. math. Phys.36, 287–304 (1974)Google Scholar
  6. 6.
    Connes, A.: Ann. Scient. Ec. Norm. Sup.6, 133–252 (1973)Google Scholar
  7. 7.
    Doplicher, S., Kastler, D.: Commun. math. Phys.7, 1–20 (1968)Google Scholar
  8. 8.
    Doplicher, S., Roberts, J. E.: Commun. math. Phys.28, 331–348 (1972)Google Scholar
  9. 9.
    Doplicher, S., Haag, R., Roberts, J. E.: Commun. math. Phys.23, 199–230 (1971)Google Scholar
  10. 10.
    Araki, H.: J. Math. Phys.5, 1–13 (1964)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • John E. Roberts
    • 1
  1. 1.II. Institut für Theoretische Physik der Universität HamburgHamburgGermany

Personalised recommendations