Skip to main content
Log in

Baser*-semigroups and the logic of quantum mechanics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The theory of orthomodular ortholattices provides mathematical constructs utilized in the quantum logic approach to the mathematical foundations of quantum physics. There exists a remarkable connection between the mathematical theories of orthomodular ortholattices and Baer*-semigroups; therefore, the question arises whether there exists a phenomenologically interpretable role for Baer *-semigroups in the context of the quantum logic approach. Arguments, involving the quantum theory of measurements, yield the result that the theory of Baer *-semigroups provides the mathematical constructs for the discussion of “operations” and conditional probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Birkhoff, G.: Lattices in applied mathematics. Proceedings of Symposia in Pure Mathematics, Vol. 2, Lattice Theory, pp. 155–184 Providence, R. I.: American Mathematical Society 1961.

    Google Scholar 

  2. —— Lattice theory. Colloquium Publications, Vol. 25, 3rd Ed. Providence, R. I.: American Mathematical Society 1967.

    Google Scholar 

  3. ——, andJ. von Neumann: The logic of quantum mechanics. Ann. Math.37, 823–843 (1936).

    Google Scholar 

  4. Bodiou, G.: Theorie dialectique des probabilities. Paris: Gauthier-Villars 1964.

    Google Scholar 

  5. Ekstein, H.: Presymmetry. Phys. Rev.153, 1397–1402 (1967).

    Google Scholar 

  6. Foulis, D. J.: Baer *-semigroups. Proc. Am. Math. Soc.11, 648–654 (1960).

    Google Scholar 

  7. Gudder, S.: Spectral methods for a generalized probability theory. Trans. Am. Math. Soc.119, 428–442 (1965).

    Google Scholar 

  8. —— Uniqueness and existence properties of bounded observables. Pacific J. Math.19, 81–93 (1966).

    Google Scholar 

  9. Gunson, J.: On the algebraic structure of quantum mechanics. Commun. Math. Phys.6, 262–285 (1957).

    Google Scholar 

  10. Haag, R., andD. Kastler: An algebraic approach to quantum field theory. J. Math. Phys.5, 848–861 (1964).

    Google Scholar 

  11. Jammer, M.: The conceptual development of quantum mechanics. New York: McGraw-Hill 1966.

    Google Scholar 

  12. Jauch, J. M.: Foundations of quantum mechanics. Reading, Mass.: Addison-Wesley 1968.

    Google Scholar 

  13. Kamber, F.: Die Struktur des Aussagenkalkuls in einer physikalischen Theorie. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl.II, 103–124 (1964).

    Google Scholar 

  14. Kolmogorov, A. N.: Foundations of probability theory. New York: Chelsea Publishing Co. 1950.

    Google Scholar 

  15. Ludwig, G.: Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien. Z. Physik181, 233–260 (1964).

    Google Scholar 

  16. Lüders, G.: Über die Zustandsänderung durch den Meßprozeß. Ann. Physik8, 322–328 (1951).

    Google Scholar 

  17. MacLaren, M. D.: Notes on axioms for quantum mechanics. Argonne National Laboratory Report, ANL-7065 (1965).

  18. Mackey, G. W.: Mathematical foundations of quantum mechanics. New York: W. A. Benjamin, Inc. 1963.

    Google Scholar 

  19. Margenau, H.: Philosophical problems concerning the meaning of measurement in physics. Philos. Sci.25, 23–33 (1958).

    Google Scholar 

  20. Messiah, A.: Quantum mechanics, Vol. 1. Amsterdam: North-Holland Publishing Company 1961.

    Google Scholar 

  21. Neveu, J.: Mathematical foundations of the calculus of probability. San Francisco: Holden-Day 1965.

    Google Scholar 

  22. Pauli, W.: Die allgemeinen Prinzipien der Wellenmechanik, Handbuch der Physik, Vol. 1, Part 1, 1–168. Berlin-Göttingen-Heidelberg: 1958.

  23. Piron, C.: Axiomatique quantique. Helv. Phys. Acta37, 439–468 (1964).

    Google Scholar 

  24. -- De l'interpretation des treillis complets faiblement modulaires. Preprint, Institut de Physique Théorique de l'Université de Gnève.

  25. Pool, J. C. T.: Simultaneous observability and the logic of quantum mechanics. Thesis, State University of Iowa, Department of Physics, Report SUI-63-17 (1963).

  26. -- Semimodularity and the logic of quantum mechanics. To appear in Commun. Math. Phys.

  27. Randall, C. H.: A mathematical foundation for empirical science with special reference to quantum theory. Ph. D. Thesis, Rensselaer Polytechnic Institute (1966).

  28. Varadarajan, V. S.: Probability in physics and a theorem on simultaneous observability. Commun. Pure Appl. Math.15, 189–217 (1962).

    Google Scholar 

  29. von Neumann, J.: Mathematical foundations of quantum mechanics. Trans. byR. T. Beyer. Princeton: Princeton Univ. Press 1955.

    Google Scholar 

  30. Zierler, N.: Axioms for non-relativistic quantum mechanics. Pacific J. Math.11, 1151–1169 (1961).

    Google Scholar 

  31. —— andM. Schlessinger: Boolean embeddings of orthomodular sets and quantum logic. Duke Math. J.32, 251–262 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the United States Atomic Energy Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pool, J.C.T. Baser*-semigroups and the logic of quantum mechanics. Commun.Math. Phys. 9, 118–141 (1968). https://doi.org/10.1007/BF01645838

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645838

Keywords

Navigation