Advertisement

Communications in Mathematical Physics

, Volume 7, Issue 3, pp 234–260 | Cite as

Application of the Riemann method to the Bethe-Salpeter equation

  • J. Honerkamp
Article

Abstract

The Bethe-Salpeter equation describing the interaction of two scalar particles via the exchange of a third scalar particle with mass μ≠0 is in configuration space a hyperbolic partial differential equation of fourth order which will be studied with the help of the Riemann method. This method yields two Volterra equations the solutions of which are special solutions of the Bethe-Salpeter equation. The wave function is a superposition of the special solutions. For the coefficients one gets a system of two integral equations. The Fredholm determinant of the system is the generalization of the nonrelativistic Jost function.

Keywords

Differential Equation Neural Network Statistical Physic Wave Function Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Newton, R. G.: J. Math. Phys.1, 319 (1960).Google Scholar
  2. 2.
    Garabedian, P. R.: Partial differential equations. London: John Wiley & Sons 1964.Google Scholar
  3. 3.
    Courant, R., andD. Hilbert: Methods of mathematical physics II. New York: Interscience 1962.Google Scholar
  4. 4.
    See also:Nakanishi, N.: J. Math. Phys.4, 1229 (1963).Kramer, G., andK. Meetz: Commun. Math. Phys.3, 29 (1966). They treat the Bethe-Salpeter equation in the momentum space with the help of a spectral representation and get in a similar manner via a system of integral equations a generalised Jost function.Google Scholar
  5. 5.
    Meetz, K.: J. Math. Phys.3, 690 (1962).Weinberg, S.: Phys. Rev.131, 440 (1963).Google Scholar
  6. 6.
    Schwartz, C., andC. Zemach: Phys. Rev.141, 1454 (1966).Google Scholar
  7. 7.
    Bateman, H. II: Higher transcendental functions. New York: Mc-Graw Hill 1955.Google Scholar
  8. 8.
    Copson, E. T.: Asymptotic expansions. London: Cambridge University Press 1965.Google Scholar
  9. 9.
    For more detailed calculations see:Honerkamp, J.: Lösung der Bethe-Salpeter-Gleichung mit Hilfe der Riemannschen Methode. Preprint Universität Hamburg.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • J. Honerkamp
    • 1
  1. 1.II. Institut für Theoretische Physik der Universität HamburgGermany

Personalised recommendations