Advertisement

Communications in Mathematical Physics

, Volume 7, Issue 3, pp 190–217 | Cite as

Spectral representations of Lorentz invariant distributions and scale transformation

  • A. Rieckers
  • W. Güttinger
Article

Abstract

An approach to the theory of Lorentz invariant distributions is developed in terms of covariant spectral representations. The behaviour of singular invariant distributions under a change of scale is analyzed. It is shown that the conventional extension of homogeneous singular functions into distributions inR4, followed by a breakdown of homogeneity, is incomplete. Homogeneous extensions depending on an arbitrary scaling parameter are introduced, calculation techniques are developed and various formulae having applications in quantum field theory are derived.

Keywords

Neural Network Statistical Physic Field Theory Complex System Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schwartz, L.: Theorie des distributions, I, II. Paris: Hermann 1950/51.Google Scholar
  2. 2.
    Methée, P. D.: Commun. Math. Helv.28, 225 (1954); Coll. CNRS, Nancy 1956.Google Scholar
  3. 3.
    Braga, C.: Univ. S. Paulo Preprint 1960.Google Scholar
  4. 4.
    Garding, L., eJ. L. Lions: Nuovo Cimento Vol. XIV, Ser. X (1959).Google Scholar
  5. 5.
    Gelfand, I. M., andG. E. Shilov: Generalized functions I. New York, London: Academic Press 1964.Google Scholar
  6. 6.
    Güttinger, W.: Fortschr. Physik14, 483 (1966).Google Scholar
  7. 7.
    Pfaffelhuber, E.: Univ. München, Thesis (1966).Google Scholar
  8. 8.
    Güttinger, W., andE. Pfaffelhuber: Nuovo Cimento52, 389 (1967).Google Scholar
  9. 9.
    Rohrlich, F., eC. Gorgé: Univ. Syracuse Preprints (1966).Google Scholar
  10. 10.
    Güttinger, W., E. Pfaffelhuber u.A. Rieckers: Univ. München, Preprint (1967).Google Scholar
  11. 11.
    Cf., e.g.,Schweber, S.: Introduction to relativistic quantum field theory. New York: Harper & Row 1961.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • A. Rieckers
    • 1
  • W. Güttinger
    • 1
  1. 1.Department of PhysicsUniversity of MunichGermany

Personalised recommendations