Skip to main content
Log in

The van der Waals limit for classical systems. I. A variational principle

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the thermodynamic pressurep(μ, γ) of a classical system of particles with the two-body interaction potentialq(r)+γv Kr), where υ is the number of space dimensions, γ is a positive parameter, and μ is the chemical potential. The temperature is not shown in the notation. We prove rigorously, for hard-core potentialsq(r) and for a very general class of functionsK(s), that the limit γ→0 of the pressurep(μ, γ) exists and is given by

where the limit and the supremum can be interchanged. Here ℛ is a certain class of nonnegative, Riemann integrable functions,D is a cube of volume |D|, anda 0(ϱ) is the free energy density of a system withK=0 and density ϱ. A similar result is proved for the free energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kac, M.: Phys. Fluids2, 8 (1959).

    Google Scholar 

  2. Baker, G. A.: Phys. Rev.126, 2072 (1962).

    Google Scholar 

  3. Kac, M., G. E. Uhlenbeck, and P. Hemmer: J. Math. Phys.4, 216 (1963).

    Google Scholar 

  4. Lebowitz, J. L., and O. Penrose: J. Math. Phys.7, 98 (1966).

    Google Scholar 

  5. Brout, R.: Phys. Rev.115, 824 (1959).

    Google Scholar 

  6. Hemmer, P. C.: J. Math. Phys.4, 248 (1963).

    Google Scholar 

  7. Lebowitz, J. L., G. Stell, and S. Baer: J. Math. Phys.6, 1282 (1965).

    Google Scholar 

  8. van Kampen, N. G.: Phys. Rev.135, A 362 (1964).

    Google Scholar 

  9. Dobrushin, R. L.: Theory probability. USSR,9, 566 (1964).

    Google Scholar 

  10. Fisher, M. E.: Arch. Rat. Mech. An.17, 224 (1964).

    Google Scholar 

  11. Rudin, W.: Principles of mathematical analysis, theorem 6.11 and 10.28. Second Ed. New York: McGraw-Hill

  12. Rogosinski, W.: Volume and integral, theorem 57. London: Oliver and Boyd 1952.

    Google Scholar 

  13. Penrose, O.: Phys. Letters11, 224 (1964).

    Google Scholar 

  14. Hardy, G., J. E. Littlewood, and G. Polya: Inequalities, para 3.18 (We use ‘convex’ in the sense that these authors use ‘continuous convex’). London: Cambridge University Press 1959.

    Google Scholar 

  15. Lebowitz, J. L.: Ann. Rev. Phys. Chem.19, 389 (1968).

    Google Scholar 

  16. Dobrushin, R. L., and R. A. Minlos: Theory Probability, USSR.12 535 (1967), final inequality.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gates, D.J., Penrose, O. The van der Waals limit for classical systems. I. A variational principle. Commun.Math. Phys. 15, 255–276 (1969). https://doi.org/10.1007/BF01645528

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645528

Keywords

Navigation