Monatshefte für Mathematik

, Volume 103, Issue 2, pp 145–157

An Ω-theorem for an error term related to the sum-of-divisors function

  • Y. -F. S. Pétermann


Let σ denote the sum-of-divisors function, and set\(E_1 (x): = \sum\limits_{n = x} {\sigma (n) - \frac{{\pi ^2 }}{{12}}x^2 }\). Gronwall and Wigert proved (independently) in 1913 and 1914, respectively, thatE1 (x)=Ω (x log logx). In this paper we obtain the more preciseE1 (x)=Ω(x log logx). The method consists in averaging\(E_{ - 1} (x): = \sum\limits_{n = x} {\frac{{\sigma (n)}}{n} - \left( {\frac{{\pi ^2 }}{6}x - \tfrac{1}{2}\log x} \right)}\) over suitable arithmetic progressions, and was suggested by the work ofP. Erdös andH. N. Shapiro [Canad. J. Math. 3–4, 375–385 (1951)] on the error term corresponding to Euler's functions,\(\sum\limits_{n = x} {\varphi (n) - \frac{3}{{\pi ^2 }}x^2 }\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Erdös, P., Shapiro, H. N.: On the changes of sign of a certain error function. Canad. J. Math.3–4, 375–385 (1951).Google Scholar
  2. [2]
    Gronwall, T. H.: Some asymptotic expressions in the theory of numbers. Trans. Amer. Math. Soc.14, 113–122 (1913).Google Scholar
  3. [3]
    Mertens, F.: Ein Beitrag zur analytischen Zahlentheorie. J. Reine Angew. Math.78, 46–62 (1874).Google Scholar
  4. [4]
    Pétermann, Y.-F. S.: Oscillations and changes of sign of error terms related to Euler's function and to the sum-of-divisors function. Thèse de doctorat. Université de Genève. 1985.Google Scholar
  5. [5]
    Pétermann, Y.-F. S.: Changes of sign of error terms related to Euler's function and to divisor functions II. To appear.Google Scholar
  6. [6]
    Pillai, S. S., Chowla, S.: On the error terms in some asymptotic formulae in the theory of numbers I. J. London Math. Soc.5, 95–101 (1930).Google Scholar
  7. [7]
    Recknagel, W.: Über eine Vermutung von S. Chowla und H. Walum. Arch. Math.44, 348–354 (1985).Google Scholar
  8. [8]
    Walfisz, A.: Teilerprobleme I. Math. Z.26, 66–88 (1927).Google Scholar
  9. [9]
    Wigert, S.: Sur quelques fonctions arithmétiques. Acta Math.37, 113–140 (1914).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Y. -F. S. Pétermann
    • 1
  1. 1.Section de MathématiquesGenève 24Suisse

Personalised recommendations