Communications in Mathematical Physics

, Volume 48, Issue 3, pp 215–233 | Cite as

Operator product expansions in conformally covariant quantum field theory

  • W. Rühl
  • B. C. Yunn


Operator products in quantum field theory on two-dimensional Minkowski space are expanded into a series of local operators by means of the tensor product decomposition theorem for representations of the conformal group. The Thirring model is used as an explicit example. Two types of expansions result. If the operator product acts on the vacuum state, we obtain strictly covariant expansions. In general however, each term in the expansion is only semicovariant.


Neural Network Complex System Quantum Field Theory Nonlinear Dynamics Tensor Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferrara, S., Gatto, Q., Grillo, A.F.: Nuovo Cimento Lett.2, 1363 (1971); Phys. Rev. D5, 3102 (1972); Phys. Lett.36B, 124 (1971); Ann. Phys. (N.Y.)76, 161 (1973); Springer Tracts in Modern Physics, Vol. 67, p. 1. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  2. 2.
    Bonora, L., Nuovo Cimento Lett.3, 548 (1972); Bonora, L., Cicciariello, S., Sartori, G., Tonin, M., in: Scale and conformal symmetry in hadron physics. Proc. of the Advanced School of Physics, Frascati, Italy 1972 (R. Gatto ed.). New York: Wiley 1973Google Scholar
  3. 3.
    Polyakov, A. M.: Non-Hamiltonian approach to the quantum field theory at small distances. Landau Institute for Theoretical Physics Preprint, Chernogolovka, August 1973, and former work quoted thereGoogle Scholar
  4. 4.
    Swieca, J. A.: Conformal operator expansions in the Minkowski Region. Pontificia Universidade Católica do Rio de Janeiro Preprint, May 1974; B. Schroer, J. A. Swieca, A. H. Völkel, Phys. Rev. D11, 1509 (1975)Google Scholar
  5. 5.
    Wilson, K.: Phys. Rev.179, 1499 (1969)Google Scholar
  6. 6.
    Rühl, W., Yunn, B. C.: Representations of the universal covering group ofSU(1, 1) and their bilinear and trilinear invariant forms. Universität Kaiserslautern Preprint, revised version, to appear in J. Math. Phys.Google Scholar
  7. 7.
    Thirring, W.: Ann. Phys. (N.Y.)3, 91 (1958)Google Scholar
  8. 8.
    Klaiber, B.: In: Quantum theory and statistical Physics. Lectures in Theoretical Physics, Vol. X-A, p. 141 (A. O. Barut and W. E. Brittin eds.). New York: Gordon and Breach 1968Google Scholar
  9. 9.
    Dell'Antonio, G. F., Frishman, Y., Zwanziger, D.: Phys. Rev. D6, 988 (1972)Google Scholar
  10. 10.
    Kupsch, J., Rühl, W., Yunn, B. C.: Ann. Phys. (N.Y.)89, 115 (1975)Google Scholar
  11. 11.
    Rühl, W.: Acta Phys. Austriaca, Suppl. XIV, 643 (1975)Google Scholar
  12. 12.
    Schroer, B., Swieca, J. A.: Phys. Rev. D10, 408 (1974)Google Scholar
  13. 13.
    Slater, L. J.: Generalized hypergeometrie functions. Cambridge: University Press 1966Google Scholar
  14. 14.
    Rühl, W.: The Lorentz group and harmonic analysis. See the list of references in this book for references to Toller's work. New York: Benjamin 1969Google Scholar
  15. 15.
    Gradshteyn, I. S., Ryshik, I. M.: Table of Integrals, series and products. New York, London: Academic Press 1965Google Scholar
  16. 16.
    Ref. [13], p. 34, Eq. (1.8.10)Google Scholar
  17. 17.
    Rühl, W., Yunn, B. C.: Operator product expansions in conformally covariant quantum field theory, Part II: Semicovariant Expansion. Kaiserslautern: Preprint, November 1975Google Scholar
  18. 18.
    Mack, G.: In: Renormalization and invariance in quantum field theory, ed. E. R. Caianiello. New York: Plenum Press 1974, pp. 123–157Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • W. Rühl
    • 1
  • B. C. Yunn
    • 1
  1. 1.Fachbereich Physik der UniversitätKaiserslauternFederal Republic of Germany

Personalised recommendations