Advertisement

Communications in Mathematical Physics

, Volume 48, Issue 3, pp 207–213 | Cite as

Thermodynamic limit of correlation functions in a system of gravitating fermions

  • Bernhard Baumgartner
Article

Abstract

We show that the correlation functions in a system of gravitating fermions converge as tempered distributions in the thermodynamic limit, if the system is not at the point of phase-transition. The densities converge to the density of the Thomas-Fermi-theory and are not correlated in the limit.

Keywords

Neural Network Statistical Physic Correlation Function Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hertel, P., Narnhofer, H., Thirring, W.: Commun. math. Phys.28, 159–167 (1972)Google Scholar
  2. 2.
    Hertel, P., Thirring, W.: Thermodynamic Instability of a System of Gravitating Fermions. In: Dürr, H. P. (Ed.): Quanten und Felder. Braunschweig: Vieweg 1971Google Scholar
  3. 3.
    Thirring, W.: Vorlesungen über mathematische Physik T7: Quantenmechanik. Lecture notesGoogle Scholar
  4. 4.
    Narnhofer, H., Thirring, W.: Acta Phys. Austr.41, 281–297 (1975)Google Scholar
  5. 5.
    Maison, H. D.: Commun. math. Phys.22, 166–172 (1971)Google Scholar
  6. 6.
    Lichtenstein, L.: Math. Z.3, 8–10 (1918)Google Scholar
  7. 7.
    Griffiths, R. B.: J. Math. Phys.5, 1215–1222 (1964)Google Scholar
  8. 8.
    Baumgartner, B.: The Thomas-Fermi-Theory as Result of a Strong-Coupling-Limit. To be publishedGoogle Scholar
  9. 9.
    Thirring, W.: Vorlesungen über mathematische Physik T8: Quantenmechanik großer Systeme. Lecture notesGoogle Scholar
  10. 10.
    Roberts, A., Varberg, D.: Convex Functions. London: Academic Press 1973Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Bernhard Baumgartner
    • 1
  1. 1.Institut für theoretische Physik der Universität WienWienAustria

Personalised recommendations