Advertisement

Communications in Mathematical Physics

, Volume 59, Issue 2, pp 117–142 | Cite as

Existence of three phases for aP(ϕ)2 model of quantum field

  • K. Gawędzki
Article

Abstract

In the two-dimensional model of the quantum field theory with lagrangean density :(∂μϕ)2−(−ν)ϕ2λ1/2 ϕ4−λϕ6: there exist (at least) three different phases for small λ and some ν(λ).

Keywords

Neural Network Statistical Physic Field Theory Complex System Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dimock, J., Glimm, J.: Measures on Schwartz distribution space and applications toP(ϕ)2 field theories. Advan. Math.12, 58–83 (1974)Google Scholar
  2. 2.
    Fröhlich, J.: Phase transitions in two dimensional quantum field models. ZIF, University of Bielefeld. PreprintGoogle Scholar
  3. 3.
    Fröhlich, J.: Phase transitions, Goldstone bosons and topological superselection rules. Acta Phys. Austr. Supl.15, 133–269 (1976)Google Scholar
  4. 4.
    Fröhlich, J., Simon, B.: Pure states for generalP(ϕ)2 theories: construction, regularity and variational equality. Princeton PreprintGoogle Scholar
  5. 5.
    Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions and continuous symmetry breaking. Commun. math. Phys.50, 79–95 (1976)Google Scholar
  6. 6.
    Glimm, J., Jaffe, A., Spencer, T.: Phase transitions for ϕ24 quantum fields. Commun. math. Phys.45, 203–216 (1975)Google Scholar
  7. 7.
    Glimm, J., Jaffe, A., Spencer, T.: Convergent expansion about mean field theory. I and II. Ann. Phys.101, 610–630 (1976);101, 631–669 (1976)Google Scholar
  8. 8.
    Guerra, F., Rosen, L., Simon, B.: Nelson's symmetry and the infinite behavior of the vacuum inP(ϕ)2. Commun. math. Phys.27, 10–22 (1972)Google Scholar
  9. 9.
    Guerra, F., Rosen, L., Simon, B.: TheP(ϕ)2 Euclidean quantum field theory as classical statistical mechanics. I and II. Ann. Math.101, 111–189 (1975);101, 191–259 (1975)Google Scholar
  10. 10.
    Guerra, F., Rosen, L., Simon, B.: Boundary conditions for theP(ϕ)2 Euclidean field theory. Ann. Inst. H. Poincaré25, 231–334 (1976)Google Scholar
  11. 11.
    Pirogov, S.A., Sinai, Ya.G.: Phase diagrams of the classical lattice systems. I and II. Teor. Mat. Fis.25, 358–369 (1975);26, 61–76 (1976)Google Scholar
  12. 12.
    Simon, B.: TheP(ϕ)2 Euclidean (quantum) field theory. Princeton, New Jersey: Princeton University Press 1974Google Scholar
  13. 13.
    Sinai, Ya.G.: 1977 lectures in IHES, Bures-sur-YvetteGoogle Scholar
  14. 14.
    Glimm, J., Jaffe, A.: On approach to the critical point. Ann. Inst. H. Poincaré22, 109–122 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • K. Gawędzki
    • 1
  1. 1.Department of Mathematical Methods of PhysicsWarsaw UniversityWarsawPoland

Personalised recommendations