Advertisement

Communications in Mathematical Physics

, Volume 57, Issue 3, pp 201–212 | Cite as

Scalar Quantum Electrodynamics on the lattice as classical statistical mechanics

  • Gian Fabrizio De Angelis
  • Diego de Falco
  • Francesco Guerra
Article

Abstract

Wilson's lattice approximation allows us to apply classical statistical mechanics ideas to the study of Scalar Quantum Electrodynamics. Our main tools are Griffiths-Kelly-Sherman inequalities, the transfer matrix formalism and exponential bounds. Our main result is the existence of the infinite volume limit for every value of the coupling parameters.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Matrix Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balian, R., Drouffe, J. M., Itzykson, C.: Phys. Rev. D10, 3376–3395 (1974)Google Scholar
  2. 2.
    De Angelis, G. F., de Falco, D.: Lettere Nuovo Cimento18, 536–538 (1977)Google Scholar
  3. 3.
    Fröhlich, J.: Phase transitions, goldstone bosons, and topological superselection rules. Proceedings of the Internationale Universitätswochen für Kernphysik, Schladmig, February 1976Google Scholar
  4. 4.
    Ginibre, J.: Commun. Math. Phys.16, 310–328 (1970)Google Scholar
  5. 5.
    Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupledP(φ)2 model and other applications of high temperature expansions. In: Constructive quantum field theory (ed. G. Velo, A.S. Wightman) Berlin-Heidelberg-New York: Springer 1973Google Scholar
  6. 6.
    Glimm, J., Jaffe, A.: Phys. Letters66 B 67–69 (1977)Google Scholar
  7. 7.
    Glimm, J., Jaffe, A.: Instantons in aU(1) lattice gauge theory: a coulomb dipole gas. Preprint (1977)Google Scholar
  8. 8.
    Gohberg, I. C., Krein, M. G.: Introduction to the theory of nonselfadjoint operators. Providence: American Mathematical Society 1969Google Scholar
  9. 9.
    Guerra, F., Rosen, L., Simon, B.: Ann. Math.101, 111–259 (1975)Google Scholar
  10. 10.
    Kogut, J. B.: Three lectures on lattice gauge theory. Lecture series presented at the International Summer Institute for Theoretical Physics. Bielefeld August 1976Google Scholar
  11. 11.
    Lüscher, M.: Construction of a selfadjoint strictly positive transfer matrix for Euclidean lattice gauge theories. Preprint (1976)Google Scholar
  12. 12.
    Lüscher, M.: Absence of spontaneous gauge symmetry breaking in Hamiltonian lattice gauge theories. Preprint (1977)Google Scholar
  13. 13.
    Nelson, E.: Probability theory and Euclidean field theory. In: Constructive quantum field theory (ed. G. Velo, A.S. Wightman). Berlin-Heidelberg-New York: 1973Google Scholar
  14. 14.
    Osterwalder, K.: Gauge theories on the lattice. Lecture delivered at the 1976 Cargèse Summer School. Preprint (1976)Google Scholar
  15. 15.
    Osterwald, K., Seiler, E.: Gauge field theories on the lattice. Preprint (1977)Google Scholar
  16. 16.
    Polyakov, A. M.: Nucl. Phys. B120, 429–458 (1977)Google Scholar
  17. 17.
    Simon, B.: TheP(φ)2 Euclidean (quantum) field theory. Princeton: Princeton University Press 1974Google Scholar
  18. 18.
    Wilson, K. G.: Phys. Rev. D10, 2445–2459 (1974)Google Scholar
  19. 19.
    Yang, C. N., Mills, R. L.: Phys. Rev.96, 191 (1954)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Gian Fabrizio De Angelis
    • 1
  • Diego de Falco
    • 1
  • Francesco Guerra
    • 1
  1. 1.Institute of PhysicsUniversity of SalernoSalernoItaly

Personalised recommendations