Communications in Mathematical Physics

, Volume 57, Issue 3, pp 193–200 | Cite as

On the convergence of exponential operators—the Zassenhaus formula, BCH formula and systematic approximants

  • Masuo Suzuki


The convergence of the Zassenhaus formula is proven under an appropriate condition as well as for other exponential operators such as the Baker-Campbell-Hausdorff formula.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Suzuki, M.: Commun. math. Phys.51, 183 (1976)Google Scholar
  2. 2.
    Magnus, W.: Commun. Pure Appl. Math.7, 649 (1954)Google Scholar
  3. 3.
    Wilcox, R. M.: J. Math. Phys.8, 962 (1967)Google Scholar
  4. 4.
    Trotter, H. F.: Proc. Am. Math. Soc.10, 545 (1959); see also references cited in [I]Google Scholar
  5. 5.
    Suzuki, M.: Progr. Theoret. Phys.56, 1454 (1976)Google Scholar
  6. 6.
    Suzuki, M., Miyashita, S., Kuroda, A., Kawabata, C.: Phys. Lett.60A, 478 (1977)Google Scholar
  7. 7.
    Suzuki, M., Miyashita, S., Kuroda, A.: Progr. Theoret. Phys. (submitted)Google Scholar
  8. 8.
    Rogiers, J., Dekeyser, R.: Phys. Rev. B13, 4886 (1976)Google Scholar
  9. 9.
    Rogiers, J., Betts, D. D.: Physica85 A, 553 (1976)Google Scholar
  10. 10.
    Brower, R. C., Kuttner, F., Nauenberg, M., Subbarao, K.: PreprintGoogle Scholar
  11. 11.
    Honda, N.: Private communicationGoogle Scholar
  12. 12.
    Weiss, G. H., Maradudin, A. A.: J. Math. Phys.3, 771 (1962)Google Scholar
  13. 13.
    Richtmyer, R. D., Greenspan, S.: Commun. Pure Appl. Math.18, 107 (1965)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Masuo Suzuki
    • 1
  1. 1.Theoretical Physics InstituteThe University of AlbertaEdmontonCanada

Personalised recommendations