Communications in Mathematical Physics

, Volume 54, Issue 3, pp 283–292 | Cite as

Construction of a selfadjoint, strictly positive transfer matrix for Euclidean lattice gauge theories

  • M. Lüscher


It is shown that physical positivity holds in Wilson's lattice gauge theories, i.e. transition probabilities between gauge invariant states are non-negative and the quantum mechanical Hamiltonian has real eigenvalues only.


Neural Network Statistical Physic Complex System Gauge Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilson, K. G.: Phys. Rev. D10, 2445 (1974); Quarks and strings on a lattice CLNS-321 (1975); In: Gauge theories and modern field theory, Boston conference 1975 (eds. R. Arnowitt, P. Nath). Cambridge, Mass.: MIT-Press 1976Google Scholar
  2. 2.
    Osterwalder, K., Schrader, R.: Helv. Phys. Acta46, 277 (1973); Commun. math. Phys.42, 281 (1975)Google Scholar
  3. 3.
    Wilson, K. G.: Cargèse lectures 1976. New York: Plenum Press (to appear)Google Scholar
  4. 4.
    e.g. Hammermesh, M.: Group theory. Reading, Mass.: Addison-Wesley 1964Google Scholar
  5. 5.
    Osterwalder, K.: private communicationGoogle Scholar
  6. 6.
    Belavin, A., Polyakov, A., Schwartz, A., Tyupkin, Y.: Phys. Lett.59B, 85 (1975)Google Scholar
  7. 7.
    Lüscher, M.: DESY-76/31, to be published in Nucl. Phys. B117, 475 (1977)Google Scholar
  8. 8.
    Berezin, F. A.: The method of second quantization. New York: Academic Press 1966Google Scholar
  9. 9.
    Kogut, J., Susskind, L.: Phys. Rev. D11, 395 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • M. Lüscher
    • 1
  1. 1.II. Institut für Theoretische Physik der Universität HamburgHamburg 50Germany

Personalised recommendations