Advertisement

Communications in Mathematical Physics

, Volume 54, Issue 3, pp 255–278 | Cite as

Ground state representation of the infinite one-dimensional Heisenberg ferromagnet

II. An explicit plancherel formula
  • Donald Babbitt
  • Lawrence Thomas
Article

Abstract

In its ground state representation, the infinite, spin 1/2 Heisenberg chain provides a model for spin wave scattering, which entails many features of the quantum mechanicalN-body problem. Here, we give a complete eigenfunction expansion for the Hamiltonian of the chain in this representation, forall numbers of spin waves. Our results resolve the questions of completeness and orthogonality of the eigenfunctions given by Bethe for finite chains, in the infinite volume limit.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics State Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babbitt, D. G., Thomas, L. E.: An explicit Plancherel theorem for the ground state representation of the Heisenberg chain. Proc. Nat. Acad. Sci., to appear (1977)Google Scholar
  2. 2.
    Bethe, H.: Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Physik71, 205–226 (1931)Google Scholar
  3. 3.
    Hepp, K.: Scattering theory in the Heisenberg ferromagnet. Phys. Rev. B5, 95–97 (1972)Google Scholar
  4. 4.
    Thomas, L. E.: Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. I. J. Math. Anal. Appl., to appearGoogle Scholar
  5. 5.
    Babbitt, D. G., Thomas, L. E.: Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. II. Completeness and orthogonality (a preprint available from the authors)Google Scholar
  6. 6.
    Streater, R. F.: Spin wave scattering. In: Scattering theory in mathematical physics (ed. J. A. Lavita, P. Marchand), pp. 273–298. Boston: D. Reidel 1974Google Scholar
  7. 7.
    Wortis, M.: Bound states of two spin waves in the Heisenberg ferromagnet. Phys. Rev.132, 85–97 (1963)Google Scholar
  8. 8.
    Yang, C. N., Yang, C. P.: One dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe's hypothesis for ground state in a finite system. Phys. Rev.150, 221–137 (1966)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Donald Babbitt
    • 1
  • Lawrence Thomas
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations