Advertisement

Communications in Mathematical Physics

, Volume 54, Issue 3, pp 249–253 | Cite as

Quantum fields with a multiplicative structure

  • W. Rühl
  • B. C. Yunn
Article
  • 38 Downloads

Abstract

We define quantum fields (giant fields) on a multidimensional space which contain an infinite set of local fields in Minkowski space. The multiplicative structure for the giant fields implies global expansions for products of the local fields. Conformal symmetry is imposed in order to reduce the number of kinematical variables.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greenberg, O. W.: Ann. Phys.16, 158 (1961)Google Scholar
  2. 2.
    Robinson, D. W.: Phys. Lett.9, 189 (1964)Google Scholar
  3. 3.
    Wightman, A. S.: Introduction to some aspects of the relativistic dynamics of quantized fields. In: Cargèse lectures in theoretical physics, high energy electromagnetic interactions and field theory (ed. M. Lévy). New York: Gordon and Breach 1967Google Scholar
  4. 4.
    In general the expansions (6) involve non-local projections of local fields or equivalently local fields on infinitely many sheets of Minkowski space; see Schroer, B., Swieca, J. A.: Phys. Rev. D10, 480 (1974) and Ref. [9]Google Scholar
  5. 5.
    Rühl, W., Yunn, B. C.: Commun. math. Phys.48, 215 (1976)Google Scholar
  6. 6.
    Rühl, W., Yunn, B. C.: Representations of the universal covering group of the conformal group belonging to the continuous principal series, Universität Kaiserslautern, Technical Report, October 1976Google Scholar
  7. 7.
    Rühl, W., Yunn, B. C.: Quantum fields with a multiplicative structure, Universität Kaiserslautern, Preprint, November 1976; beyond the ideas presented here, it contains details and gives results on the application of harmonic analysisGoogle Scholar
  8. 8.
    Rühl, W., Yunn, B. C.: Fortschr. Phys.25, 83 (1977)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • W. Rühl
    • 1
  • B. C. Yunn
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations