Communications in Mathematical Physics

, Volume 54, Issue 3, pp 219–236 | Cite as

On the integrability of the Lie algebra of the conformal group in quantum field theory

  • Szymon Rabsztyn


It is shown that the infinitesimal conformal symmetry implies (in any quantum field theory which satisfies the Wightman axioms without invoking locality and global Poincaré symmetry) that there exists a uniquely defined unitary representation of the universal (∞-sheeted) covering group of the Minkowskian conformal groupSO e (4,2)/2. Proof was obtained using sufficient conditions for the integrability of a representation of a Lie algebra given by [8].


Neural Network Statistical Physic Field Theory Complex System Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hortaçsu, M., Seiler, R., Schroer, B.: Phys. Rev. D5, 2519 (1972)Google Scholar
  2. 2.
    Rühl, W.: Commun. math. Phys.27, 53 (1972);30, 287 (1973);34, 149 (1973)Google Scholar
  3. 3.
    Schroer, B., Swieca, J. A.: Phys. Rev. D10, 480 (1974)Google Scholar
  4. 4.
    Swieca, J. A., Völkel, A. H.: Commun. math. Phys.29, 319 (1973)Google Scholar
  5. 5.
    Lüscher, M., Mack, G.: Commun. math. Phys.41, 203 (1975)Google Scholar
  6. 6.
    Nelson, E.: Ann. Math.70, 372 (1959)Google Scholar
  7. 7.
    Simon, B.: Indian J. Math.20, 1145 (1971)Google Scholar
  8. 8.
    Flato, M., Simon, J., Snellman, H., Sternheimer, D.: Ann. Scient. Éc. Norm. Sup.5, 423 (1972)Google Scholar
  9. 8a.
    Simon, J.: Comm. math. Phys.28, 39 (1972)Google Scholar
  10. 9.
    Flato, M., Simon, J.: J. Funct. Anal.13, 268 (1973)Google Scholar
  11. 10.
    Schaaf, M.: Rep. Math. Phys.4, 275 (1973)Google Scholar
  12. 11.
    Snellman, M.: J. Math. Phys.15, 1054 (1974)Google Scholar
  13. 12.
    Mack, G.: Desy preprint, December 1975Google Scholar
  14. 13.
    Dieudonné, J.: Foundations of modern analysis. New York: Academic Press 1969Google Scholar
  15. 14.
    Simon, B.: J. Math. Phys.12, 140 (1971)Google Scholar
  16. 15.
    Bros, J., Epstein, H., Glaser, V.: Commun. math. Phys.6, 77 (1967)Google Scholar
  17. 16.
    Jost, R.: The general theory of quantized fields, Providence, Rhode Island: American Mathematical Society 1965Google Scholar
  18. 17.
    Osterwalder, K.: In: Constructive quantum field theory, (eds. G. Velo, A. S. Wightman). Lecture Notes in Physics 25. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  19. 18.
    Dieudonné, J.: Infinitesimal calculus. Herman: Paris 1971Google Scholar
  20. 19.
    Dirac, P.: Ann. Math.37, 657 (1936)Google Scholar
  21. 20.
    Penrose, R.: Relativistic symmetry groups. In: Group theory in non-linear problems (ed. A. O. Barut). Dordrecht: D. Reidel Publishing Company 1974Google Scholar
  22. 21.
    Go, T. H., Kastrup, H. A., Mayer, D. H.: Rep. Math. Phys.5, 43 (1974)Google Scholar
  23. 22.
    Go, T. H.: Commun. math. Phys.41, 157 (1975)Google Scholar
  24. 23.
    Segal, I. E.: Preprint, MIT, Cambridge: Massachusetts (1974)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Szymon Rabsztyn
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of WrocławWrocławPoland

Personalised recommendations