Skip to main content
Log in

Quantized fields in external field

II. Existence theorems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This is the second part of an article devoted to the study of quantized fields interacting with a smooth classical external field with fast space time decrease. The case of a charged scalar field is considered first. The existence of the corresponding Green's functions is proved. For weak fields, as well as pure electric or scalar external fields, the BogoliubovS-operator defined in Part I of this work is shown to be unitary, covariant, causal up-to-a-phase. Its perturbation expansion is shown to converge on a dense set in Fock space. These results are generalised to a class of higher spin quantized fields, “nicely” coupled to external fields, which includes the Dirac theory, and, in the case of minimal and magnetic dipole coupling, the spin one Petiau-Duffin-Kemmer theory. It is not known whether this class contains examples of physical interest involving quantized fields carrying spins larger than one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellissard, J.: Quantized fields in interaction with external fields. I. Exact solutions and perturbation expansion. Commun. math. Phys.41, 235–266 (1975)

    Google Scholar 

  2. Powers, R. T., Størmer, E.: Commun. math. Phys.16, 1 (1970)

    Google Scholar 

  3. Hormander, L.: Linear partial differential operators. Berlin-Göttingen-Heidelberg: Springer 1963

    Google Scholar 

  4. Schroer, B., Seiler, R., Swieca, A.: Phys. Rev. D2, 2927 (1970)

    Google Scholar 

  5. Seiler, R.: Commun. math. Phys.25, 127 (1972)

    Google Scholar 

  6. Speer, E. R.: Generalized Feynman amplitudes. Ann. Math. Studies (Princeton)62 (1969)

  7. Wightman, A. S.: Relativistic wave equations as singular hyperbolic systems. Proc. Symp. in Pure Math., Vol. 23. Berkeley 1971; Providence, Rhode Island: AMS 1973

    Google Scholar 

  8. Capri, A. Z.: J. Math. Phys.10, 575 (1969)

    Google Scholar 

  9. Petiau, G.: Contribution à la théorie des équations d'ondes corpusculaires. Acad. Roy. Belg. Classe Sci16, fasc. 2 (1936)

    Google Scholar 

  10. Duffin, R. J.: On the characteristic matrices of a covariant system. Phys. Rev.54, 1114 (1938)

    Google Scholar 

  11. Kemmer, N.: The particle aspect of Meson theory. Proc. Roy. Soc. London173 A, 91–116 (1939)

    Google Scholar 

  12. Velo, G., Zwanziger, D.: Phys. Rev.186, 1337–1341 (1969); Phys. Rev.188, 2218–2222 (1969)

    Google Scholar 

  13. Schwartz, L.: Théorie des distributions. Paris: Hermann 1966

    Google Scholar 

  14. Schatten, R.: Norms ideal of completely continuous operators. 2nd printing. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  15. Dunford, N., Schwarz, J.: Linear operators. New York: Interscience Publishers 1963

    Google Scholar 

  16. Gohberg, I. G., Krein, M. G.: Introduction à la théorie des opérateurs linéaires non auto-adjoints dans un espace hilbertien. Paris: Dunod 1971

    Google Scholar 

  17. Jost, R.: The general theory of quantized fields. Providence, Rhode Island: Amer. Math. Soc.

  18. Streater, R. F., Wightman, A. S.: PCT spin and statistics and all that. New York: Benjamin 1964

    Google Scholar 

  19. Loeffel, J. J., Laederman, J. P.: Diplôme Déc. 1972, Université de Lausanne

  20. Renouard, P.: Classification des champs libres. Ecole Polytechnique Paris 1973 Preprint No. A.167.0473

  21. Bellissard, J.: Irreducible covariant free fields. Preprint No. 73/P.618 1974 Marseille

  22. Moussa, P., Stora, R.: Methods in subnuclear physics. Lectures given in Hercegnovi Summer School 1966, Nikolić, M., Ed. New York, London, Paris: Gordon and Breach

    Google Scholar 

  23. Guelfand, I. M. Minlos, R. A., Shapiro, Z. Y.: Representations of the rotations and Lorentz group and their applications. Oxford: Pergamon 1963

    Google Scholar 

  24. Glass, A. S.: Lorentz tensors and relativistic wave equations. Thesis (unpublished) Princeton April 1971

  25. Bhabha, H. J.: Rev. Mod. Phys.17, 200 (1945)

    Google Scholar 

  26. Capri, A. Z.: Phys. Rev.178, 2427 (1969)

    Google Scholar 

  27. Capri, A. Z., Shamaly, A.: Nuovo Cimento2 B, 2361 (1971)

    Google Scholar 

  28. For an exhaustive list of references on this subject, see [19] and Corson, E. M.: Introduction to tensors, spinors, and relativistic wave equations: London: Blackie and Son Limited 1953. Reprinted 1954, 1955

    Google Scholar 

  29. Greenberg, O. W.: J. Math. Phys.3, 859 (1962)

    Google Scholar 

  30. Bellissard, J., Seiler, R.: Lett. Nuovo Cimento5, 221 (1972)

    Google Scholar 

  31. Correspondence between Wightman, A. S., and Hurley, W.J.: Private communication from Wightman, A. S.

  32. See for instance Umezawa, H.: Quantum field theory. Amsterdam: North Holland 1956

    Google Scholar 

  33. See for instance Rudin, W.: Functional analysis. New York: McGraw Hill Book Company 1973

    Google Scholar 

  34. Bers, L., John, F., Schechter, M. (Eds.): Partial differential equations. New York: Interscience Publisher Inc. 1964

    Google Scholar 

  35. Leray, J.: Hyperbolic differential equations. I.A.S. Princeton Lectures 1950 (unpublished)

  36. Yoshida, K.: Functional analysis. Berlin-Heidelberg-New York: Springer 1965

    Google Scholar 

  37. Dixmier, J.: Les algèbres d'opérateurs dans l'espace Hilbertien. Paris: Gauthiers-Villars 1969

    Google Scholar 

  38. Jaffe, A.: Phys. Rev.158, 1454 (1967)

    Google Scholar 

  39. Wightman, A. S.: In: Salam, A., Wigner, E. P. (Eds.): Aspects in quantum theory. Cambridge: University Press 1972

    Google Scholar 

  40. Courant, R., Hilbert, D.: Methods of mathematical physics. New York: Interscience Pub. 1966

    Google Scholar 

  41. Velo, G.: An existence theorem for a massive vector Meson in an external electromagnetic field. Bologna Preprint, 1974

  42. Labonté, G.: Commun. math. Phys.36, 59 (1974)

    Google Scholar 

  43. Harish-Chandra: Phys. Rev.71, 793 (1947)

    Google Scholar 

  44. Schwinger, J.: Phys. Rev.93, 615 (1954)

    Google Scholar 

  45. Reed, M., Simon, B.: Methods of modern mathematical physics. New York: Academic Press 1972

    Google Scholar 

  46. Fierz, M., Pauli, W.: Helv. Phys. Acta12, 297 (1939); — Proc. Roy Soc. A173, 211 (1939)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. S. Wightman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellissard, J. Quantized fields in external field. Commun.Math. Phys. 46, 53–74 (1976). https://doi.org/10.1007/BF01610500

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01610500

Keywords

Navigation