Communications in Mathematical Physics

, Volume 40, Issue 3, pp 283–308 | Cite as

Correlation inequalities for Ising spin lattices

  • J. K. Percus


A change of spin representation is used to present expectation inequalities on Ising lattices directly as sums of terms of like sign. The technique is extended to correlation inequalities by introducing replica variables which convert correlations into expectations on a larger space. Second order correlations are analyzed in full from this viewpoint, recovering the FKG set, among others. Third order correlations are examined in some detail, and the sign of the multi-site Ursell correlationsF3,F4,F6 established under appropriate restrictions.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. Aranoff, S., Percus, J.K.: Phys. Rev.162, 878 (1967)Google Scholar
  2. 2.
    Kijewski, L.J., Percus, J.K.: Phys. Rev.164, 228 (1967)Google Scholar
  3. 3.
    See e.g. Percus, J.K.: In: Statistical mechanics, ed. Rice, S., Freed, K., Light, J., p. 337, University of Chicago Press 1972Google Scholar
  4. 4.
    See e.g. Garrod, C., Percus, J.K.: J. Math. Phys.5, 1756 (1964)Google Scholar
  5. 5.
    Percus, J.K.: Reduced density matrices. Courant Institute Lecture Notes 1969 (unpublished)Google Scholar
  6. 6.
    Mazzaiotti, A., Parr, R.G.: J. Chem. Phys.52, 1605 (L) (1970)Google Scholar
  7. 7.
    Rosina, M., Percus, J., Kijewski, L., Garrod, C.: J. Math. Phys.10, 1761 (1969)Google Scholar
  8. 8.
    Yang, C.N.: Phys. Rev.85, 809 (1952)Google Scholar
  9. 9.
    Griffiths, R.B.: J. Math. Phys.8, 484 (1967)Google Scholar
  10. 10.
    Griffiths, R.B.: J. Math. Phys.8, 478 (1967)Google Scholar
  11. 11.
    Ginibre, J.: Phys. Rev. Letters23, 828 (1969)Google Scholar
  12. 12.
    See e.g. Ginibre, J.: Mathematical aspects of statistical mechanics, ed. Pool, J.C.T. p. 27. Providence, R.I.: American Mathematical Society 1971Google Scholar
  13. 13.
    See e.g. Fisher, M.: J. Math. Phys.7, 1776 (1966)Google Scholar
  14. 14.
    Griffiths, R.B.: J. Math. Phys.10, 1559 (1969)Google Scholar
  15. 15.
    See e.g. Gantmacher, F.R.: Theory of matrices, Vol. II, Chapter XIII. New York: Chelsea Pub. Co.Google Scholar
  16. 16.
    Fortuin, Kasteleyn, P., Ginibre, J., Commun. math. Phys.22, 89 (1971)Google Scholar
  17. 17.
    Lebowitz, J.: Commun. math. Phys.35, 87 (1974)Google Scholar
  18. 18.
    Percus, J.K.: Harvard University Seminar, Jan. (1974)Google Scholar
  19. 19.
    Griffiths, R., Hurst, C., Sherman, S., J. Math. Phys.11, 790 (1970)Google Scholar
  20. 20.
    Cartier, P.: Communicated to the writer by B. SimonGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • J. K. Percus
    • 1
  1. 1.Courant Institute of Mathematical Sciences and Physics DepartmentNew York UniversityNew YorkUSA

Personalised recommendations