Advertisement

Communications in Mathematical Physics

, Volume 40, Issue 3, pp 273–282 | Cite as

Conformal groups and conformally equivalent isometry groups

  • L. Defrise-Carter
Article

Abstract

It is shown that if ann dimensional Riemannian or pseudo-Riemannian manifold admits a proper conformal scalar, every (local) conformal group is conformally isometric, and that if it admits a proper conformal gradient every (local) conformal group is conformally homothetic. In the Riemannian case there is always a conformal scalar unless the metric is conformally Euclidean. In the case of a Lorentzian 4-manifold it is proved that the only metrics with no conformal scalars (and hence the only ones admitting a (local) conformal group not conformally isometric) are either conformal to the plane wave metric with parallel rays or conformally Minkowskian.

Keywords

Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yano, K.: The Theory of Lie derivatives. Amsterdam: North-Holland 1955Google Scholar
  2. 2.
    Defrise, L.: unpublished Ph. D. dissertation, University of Brussels, 1969Google Scholar
  3. 3.
    Suguri, T., Ueno, S.: Tensor N.S.,24, 253 (1972)Google Scholar
  4. 4.
    Taub, A.H.: Ann. Math.53, 472 (1951)Google Scholar
  5. 5.
    du Plessis, J.C.: Tensor,20, 3 (1969)Google Scholar
  6. 6.
    Billalov, P.F.: Dokl. Akad. Nauk,152, 570 (1963)Google Scholar
  7. 7.
    Eardley, D.M.: Commun. Math. Phys.37, 287 (1974)Google Scholar
  8. 8.
    Eisenhart, L.P.: Continuous groups of transformations. New York: Dover Publication 1961Google Scholar
  9. 9.
    Schouten, J.A.: Ricci Calculus Berlin-Göttingen-Heidelberg: Springer 1954Google Scholar
  10. 10.
    Eisenhart, L.P.: Riemannian geometry. Princeton: University Press, 1925Google Scholar
  11. 11.
    Cahen, M., Debever, R., Defrise, L.: J. Math. Mech.16, 761 (1967)Google Scholar
  12. 12.
    Debever, R.: Cahiers Phys.168, 303 (1964)Google Scholar
  13. 13.
    Debever, R.: Atti del convegno sulla relativista generale Firenze, G. Boubera, Editore (1965)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • L. Defrise-Carter
    • 1
  1. 1.Girton CollegeCambridgeEngland

Personalised recommendations