Communications in Mathematical Physics

, Volume 40, Issue 3, pp 235–247 | Cite as

The Kirkwood-Salsburg equations: Solutions and spectral properties

  • Herm Jan Brascamp


It is shown that the Kirkwood-Salsburg equations for a classical lattice gas are equivalent to the Dobrushin-Lanford-Ruelle equilibrium equations. The term “Kirkwood-Salsburg equations” is used here in a restricted sense, and thus the known result for a larger system of equations is improved (see Table 1). Some information on the spectrum of the Kirkwood-Salsburg operator is found in connection with zeros of partition functions. An example is given to show that the Kirkwood-Salsburg equations can have other solutions than states in the space of uniformly bounded correlation functions.


Neural Network Statistical Physic Correlation Function Complex System Partition Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruelle, D.: Statistical mechanics. New York: Benjamin 1969Google Scholar
  2. 2.
    Brascamp, H. J.: Commun. math. Phys.18, 82–96 (1970)Google Scholar
  3. 3.
    Dobrushin, R. L.: Funct. Anal. Appl.2, 292–301 (1968)Google Scholar
  4. 4.
    Lanford, O. E., Ruelle, D.: Commun. Math. Phys.13, 194–215 (1969)Google Scholar
  5. 5.
    Gallavotti, G., Miracle-Sole, S.: Commun. Math. Phys.7, 274–288 (1968)Google Scholar
  6. 6.
    Ruelle, D.: Commun. Math. Phys.18, 127–159 (1970)Google Scholar
  7. 7.
    Gruber, C., Kunz, H.: Commun. Math. Phys.22, 133–161 (1971)Google Scholar
  8. 8.
    Gruber, C., Lebowitz, J. L.: (Preprint) (E.P.F.L., Lausanne 1974)Google Scholar
  9. 9.
    Pastur, L. A.: (Preprint) (Institute for Theoretical Physics, A. N. Ukr. S.S.R., Kiev 1973)Google Scholar
  10. 10.
    Klein, W.: (Preprint) (M.I.T., Cambridge 1973)Google Scholar
  11. 11.
    Domb, C.: Advan. Phys.9, 149–361 (1960), p. 284Google Scholar
  12. 12.
    Brascamp, H. J.: Commun. Math. Phys.21, 56–70 (1971)Google Scholar
  13. 13.
    Ruelle, D.: Ann. Phys.69, 364–374 (1972)Google Scholar
  14. 14.
    Dobrushin, R. L.: Funct. Anal. Appl.2, 302–312 (1968)Google Scholar
  15. 15.
    Brascamp, H. J., Kunz, H.: Commun. math. Phys.32, 93–106 (1973)Google Scholar
  16. 16.
    Gallavotti, G., Lebowitz, J. L.: Physica70, 219–221 (1973)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Herm Jan Brascamp
    • 1
    • 2
  1. 1.The Institute for Advanced StudyPrincetonUSA
  2. 2.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations