Communications in Mathematical Physics

, Volume 42, Issue 1, pp 83–100 | Cite as

Statistical mechanics of quantum lattice systems without translation invariance



The well-known results concerning the equilibrium of a translation invariant quantum lattice system — existence of the pressure and of the time automorphisms, variational principle for the pressure — are generalized to a large class of quantum lattice systems with potentials not exhibiting covariance under the group of lattice translations.


Neural Network Covariance Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruelle, D.: Statistical mechanics. Amsterdam: W. A. Benjamin Inc. 1969Google Scholar
  2. 2.
    Robinson, D.W.: Commun. math. Phys.7, 337 (1968)Google Scholar
  3. 3.
    Lanford, O.E., Robinson, D.W.: Commun. math. Phys.9, 327 (1968)Google Scholar
  4. 4.
    Lima, R.: Commun. math. Phys.24, 180 (1972)Google Scholar
  5. 5.
    Lieb, E.H., Ruskai, M.B.: Phys. Rev. Letters30, 434 (1973)Google Scholar
  6. 6.
    Lieb, E.H., Ruskai, M.B.: J. Math. Phys.14, 1938 (1973)Google Scholar
  7. 7.
    Roos, H.: Commun. math. Phys.36, 263 (1974)Google Scholar
  8. 8.
    Lima, R., Naudts, J.: Spontaneous symmetry breakdown for quantum lattice systems. Marseille preprint 74/P. 604 (1974)Google Scholar
  9. 9.
    Gallavotti, G., Miracle-Sole, S.: Commun. math. Phys.5, 317 (1967)Google Scholar
  10. 10.
    Gallavotti, G., Miracle-Sole, S.: Commun. math. Phys.7, 274 (1968)Google Scholar
  11. 11.
    See, for instance, Haag, R., Hugenholtz, N.M., Winnink, M.: Commun. math. Phys.5, 215 (1967)Google Scholar
  12. 12.
    Araki, H.: Commun. math. Phys.38, 1 (1974)Google Scholar
  13. 13.
    Ruelle, D.: Ann. Phys.69, 364 (1972)Google Scholar
  14. 14.
    Griffiths, R.B., Lebowitz, J.L.: J. Math. Phys.9, 1284 (1968) and, as pointed out to me by the refereeGoogle Scholar
  15. 15.
    Jacobs, K.: Math. Ann.137, 125 (1959)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • H. Roos
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations