Advertisement

Communications in Mathematical Physics

, Volume 42, Issue 1, pp 65–82 | Cite as

Lagrangian dynamics of spinning particles and polarized media in general relativity

  • Ian Bailey
  • Werner Israel
Article

Abstract

The general form of the Lagrangian equations of motion is derived for a spinning particle having arbitrary multipole structure in arbitrary external fields. It is then shown how these equations, together with the complete system of field equations can be recovered from a fourdimensional action integral representing a polarized dustlike medium interacting with an arbitrary set of fields. These general results are then specialized to the case of Einstein-Maxwell fields in order to obtain the general-relativistic extension of Lorentz's dielectric theory.

Keywords

Neural Network Statistical Physic General Relativity Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Israel, W.: Lettere al Nuovo Cimento7, 860 (1973)Google Scholar
  2. 2.
    Suttorp, L. G., de Groot, S. R.: Foundations of electrodynamics, Chapters 4, 5, § 7, Amsterdam: North-Holland 1972Google Scholar
  3. 3.
    Halbwachs, F.: Théorie relativiste des fluides a spin. Paris: Gauthier-Villars 1960Google Scholar
  4. 4.
    Corben, H.C.: Classical and quantum theories of spinning particles. New York: Holden-Day 1967Google Scholar
  5. 5(a).
    Mathisson, M.: Z. Physik67, 826 (1931);Google Scholar
  6. 5(b).
    : Proc. Cambridge Phil. Soc.38, 40 (1942)Google Scholar
  7. 6(a).
    Papapetrou, A.: Praktika de l'Akademie d'Athenes14, 540 (1939);Google Scholar
  8. 6(b).
    : Proc. Roy. Soc. London A209, 248 (1951)Google Scholar
  9. 7(a).
    Taub, A.H.: J. Math. Phys.5, 112 (1964);Google Scholar
  10. 7(b).
    Proceedings of the Galileo Galilei centenary meeting on general relativity, p. 1. Firenze: G. Barbera 1965Google Scholar
  11. 8(a).
    Dixon, W.G.: Nuovo Cimento34, 317 (1964);Google Scholar
  12. 8(b).
    : J. Math. Phys.8, 1591 (1967);Google Scholar
  13. 8(c).
    : Proc. Roy. Soc. London A314, 499 (1970); A319, 509 (1970)Google Scholar
  14. 9(a).
    Madore, J.: Ann. Inst. Henri Poincaré11, 221 (1969);Google Scholar
  15. 9(b).
    : C. R. Acad. Sci. Paris273A, 782 (1971)Google Scholar
  16. 10.
    Das, A.: Progr. Theoret. Phys.23, 610 (1960); Tulczyjew, W.: Acta Phys. Polon.18, 393 (1959); Westfahl, K.: Ann. Physik20, 241 (1967)Google Scholar
  17. 11.
    Pryce, M.H.L.: Proc. Roy. Soc. London A195, 62 (1948); Møller, C.: Ann. Inst. Henri Poincaré11, 251 (1949); Beiglböck, W.D.: Commun. math. Phys.5, 106 (1967)Google Scholar
  18. 12.
    Frenkel, J.: Z. Physik37, 243 (1926)Google Scholar
  19. 13.
    Barut, A.O.: Electrodynamics and classical theory of fields and particles, p. 77. New York: MacMillan 1964Google Scholar
  20. 14(a).
    Künzle, H.P.: J. Math. Phys.13, 739 (1972);Google Scholar
  21. 14(b).
    : Commun. math. Phys.27, 23 (1972)Google Scholar
  22. 15.
    Duval, C., Fliche, H.H., Souriau, J.M.: C. R. Acad. Sci. Paris274, 1082 (1972)Google Scholar
  23. 16.
    Bargmann, V., Michel, L., Telegdi, V.L.: Phys. Rev. Letters2, 435 (1959); Weyssenhoff, J., Raabe, A.: Acta Phys. Polon.9, 46 (1947)Google Scholar
  24. 17.
    Pauli, W.: Theory of relativity (transl. by G. Field, § 35 and p. 216. New York: Pergamon 1958Google Scholar
  25. 18.
    Møller, C.: Theory of relativity, Chapter 7. Oxford: Clarendon Press 1972Google Scholar
  26. 19.
    Penfield, P., Haus, H.A.: Electrodynamics of moving media. Cambridge, Mass.: M. I. T. Press 1967Google Scholar
  27. 20.
    Minkowski, H.: (a) Nachr. Ges. Wiss. Göttingen53 (1908),Google Scholar
  28. 20(b).
    : Math. Ann.68, 472 (1910); Abraham, M.: Ann. Physik44, 537 (1914); Einstein, A., Laub, J.: Ann. Physik26, 541 (1908)Google Scholar
  29. 21.
    de Groot, S.R., Suttorp, L.G.: Physica39, 84 (1968)Google Scholar
  30. 22.
    Grot, R.A., Eringen, A.C.: Int. J. Engng. Sci.4, 610 (1966)Google Scholar
  31. 23.
    Rosenfeld, L.: Mem. Acad. Roy. Belg.18, fasc. 6 (1940); Belinfante, F.J.: Physica6, 887 (1939)Google Scholar
  32. 24.
    Taub, A.H.: In: Cattaneo, C. (Ed.): Relativistic fluid dynamics, p. 266; Bressanone: C.I.M.E. 1971; Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time, p. 69. New York: Cambridge U.P. 1973Google Scholar
  33. 25.
    Maugin, G.A.: Ann. Inst. Henri Poincaré15, 275 (1971)Google Scholar
  34. 26.
    Weyl, H.: Phys. Rev.77, 699 (1950)Google Scholar
  35. 27.
    Sciama, D.W.: J. Math. Phys.2, 472 (1961)Google Scholar
  36. 28.
    Kibble, T.W.B.: J. Math. Phys.2, 212 (1961)Google Scholar
  37. 29.
    Hehl, F.W.: GRG Journ.4, 333 (1973);5, 491 (1974)Google Scholar
  38. 30(a).
    Trautman, A.: Bull. Acad. Polon. Sci.20, 185, 503 (1972);Google Scholar
  39. 30(b).
    : Symposia Mathematica12, 139 (1973)Google Scholar
  40. 31.
    Isham, C.J., Salam, A., Strathdee, J.: Nature (Phys. Sci.)244, 82 (1973)Google Scholar
  41. 32.
    Trautman, A.: Nature (Phys. Sci.)242, 7 (1973); Stewart, J., Hâjiček, P.: Nature (Phys. Sci.)244, 96 (1973); Copzýnski, W.: Phys. Lett. A43, 63 (1973)Google Scholar
  42. 33.
    Lovelock, D.: J. Math. Phys.13, 874 (1972)Google Scholar
  43. 34.
    Weyl, H.: Space, time, matter, p. 230. New York: Dover 1951Google Scholar
  44. 35.
    De Wet, J.S.: Proc. Cambridge Phil. Soc.44, 546 (1948); Chang, T.S.: Proc. Cambridge Phil. Soc.44, 70 (1948)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Ian Bailey
    • 1
  • Werner Israel
    • 2
  1. 1.Mathematics DepartmentUniversity of AlbertaEdmontonCanada
  2. 2.Theoretical Physics Institute, Physics DepartmentUniversity of AlbertaEdmontonCanada

Personalised recommendations