Communications in Mathematical Physics

, Volume 42, Issue 1, pp 1–7 | Cite as

Higher order estimates for the Yukawa2 quantum field theory

  • Oliver A. Mc Bryan


Higher order estimates of the form
$$\mathop \Pi \limits_1^n N_{\tau _i } \mathbin{\lower.3ex\hbox{$\buildrel<\over{\smash{\scriptstyle=}\vphantom{_x}}$}} const(H(g) + I)^n , \sum\limits_1^n {\tau _i< 1, \tau _i \mathbin{\lower.3ex\hbox{$\buildrel>\over{\smash{\scriptstyle=}\vphantom{_x}}$}} 0}$$
are proved for the Yukawa2 models with and without SU3 symmetry. We also prove norm convergence of ∏ 1 n \(\Pi _1^n N_{\tau _i }^{{\textstyle{1 \over 2}}} \cdot R_\kappa ^{n/2 + \delta }\) as κ→∞ whereRκ=(H(g, κ)+I)−1.


Neural Network Statistical Physic Field Theory Complex System Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosen, L.: The (Φ2n)2 quantum field theory: higher order estimates, Commun. Pure Appl. Math.24, 417–457 (1971)Google Scholar
  2. 2.
    McByan, O.: Vector currents in the Yukawa2 quantum field theory. University of Toronto (preprint)Google Scholar
  3. 3.
    Glimm, J., Jaffe, A.: Quantum field theory models. In: Dewitt, C., Stora, A. (Eds.): Statistical mechanics and quantum field theory. Gordon and Breach 1971Google Scholar
  4. 4.
    Dimock, J.: Estimates, renormalized currents, and field equations for the Yukawa2 field theory. Ann. Phys.72, 177–242 (1972)Google Scholar
  5. 5.
    McBryan, O.: Then-th order renormalized pull-through formula for the Yukawa2 quantum field theory. Rockefeller University (preprint)Google Scholar
  6. 6.
    Jaffe, A., Lanford, O., Wightman, A.: A general class of cut-off model field theories. Commun. math. Phys.15, 47–68 (1969)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Oliver A. Mc Bryan
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations