Communications in Mathematical Physics

, Volume 48, Issue 1, pp 31–51 | Cite as

Canonical and grand canonical Gibbs states for continuum systems

  • Hans-Otto Georgii


It is shown that for a large class of interactions any canonical Gibbs state satisfying a natural temperedness condition is a mixture of Gibbs states with appropriate activities, and vice versa. Some general results on Gibbs states and canonical Gibbs states are established. In particular, a differential characterization of Gibbs states is given.


Neural Network Statistical Physic Complex System Nonlinear Dynamics General Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, H.: Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie. Berlin: de Gruyter 1968Google Scholar
  2. 2.
    Dobrushin, R. L.: Theory Probability Appl.13, 197–224 (1968)Google Scholar
  3. 3.
    Dobrushin, R. L.: Theor. math. Physics4, 705–719 (1970)Google Scholar
  4. 4.
    Dobrushin, R. L., Minlos, R. A.: Theory Probability Appl.12, 535–559 (1967)Google Scholar
  5. 5.
    Föllmer, H.: In: Seminaire de Probabilités IX, Lecture Notes in Mathematics 465, Berlin-Heidelberg-New York: Springer 1975Google Scholar
  6. 6.
    Georgii, H. O.: Z. Wahrscheinlichkeitstheorie verw. Gebiete32, 277–300 (1975)Google Scholar
  7. 7.
    Georgii, H. O.: Z. Wahrscheinlichkeitstheorie verw. Gebiete33, 331–341 (1976)Google Scholar
  8. 8.
    Krickeberg, K.: Fundamentos del analisis estadistico de procesos puntuales, Lecture Notes, Santiago de Chile 1973Google Scholar
  9. 9.
    Liggett, Th. M.: Trans. Amer. Math. Soc.179, 433–453 (1973)Google Scholar
  10. 10.
    Nguyen, X. X., Zessin, H.: Punktprozesse mit Wechselwirkung, Thesis, Bielefeld 1975Google Scholar
  11. 11.
    Nguyen, X. X., Zessin, H.: Martin-Dynkin boundary of mixed Poisson processes and phase transition, preprint 1975Google Scholar
  12. 12.
    Preston, C. J.: Random fields, Lecture Notes, Oxford 1975Google Scholar
  13. 13.
    Ruelle, D.: Statistical Mechanics. New York-Amsterdam: Benjamin 1969Google Scholar
  14. 14.
    Ruelle, D.: Commun. math. Phys.18, 127–159 (1970)Google Scholar
  15. 15.
    Shiga, T.: Some problems related to Gibbs states, canonical Gibbs states and Markovian time evolutions, preprint 1975Google Scholar
  16. 16.
    Widom, B., Rowlinson, J. S.: J. Chem. Phys.52, 1670–1684 (1970)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Hans-Otto Georgii
    • 1
  1. 1.Institut für Angewandte Mathematik der UniversitätHeidelbergFederal Republic of Germany

Personalised recommendations