Skip to main content
Log in

Zeeman topologies on space-times of general relativity theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In 1964 Zeeman published a paper showing [independently of Alexandrov (1953)] that the causal structure of the light cones on Minkowski spaceM determines the linear structure ofM. This initiated the question whether a topology (more physically than the ordinary one) onM, related to the light cones also implies the linear structure ofM. In 1967 Zeeman defined such a new topology — here called Zeeman-topology ℨ0 — on Minkowski space and solved this question forM. In that paper he asked whether it is possible to generalize this program to general relativity. Two of his main questions were: (a) What is the structure of the groupG(S) of all homeomorphisms of a space-timeS with respect to the general relativistic analogue of ℨ0 (defined in § 3)? (b) What are the world lines (defined in § 1) with respect to ℨ0? Without any restrictions on the space-timeS we will give the answers: (a)G(S) is the group of all homothetic transformations onS (for an explicite discussion of this result we refer to § 5). (b) World lines are broken geodesics. Including external fields (like Maxwell fields and deviations of ℨ0) the answer (b) can be generalized in different physical directions; cf. § 3.

Ein Fernrohr wird gezeigt, womit man seinen eigenen Rücken sieht. Es führt durchs Weltall deinen Blick im Kreis zurück auf dein Genick. Zwar braucht es so geraume Frist, daß du schon längst verstorben bist, doch wird ein Standbild dir geweiht, empfängt es ihn zu seiner Zeit.

Christian Morgenstern, „Böhmischer Jahrmarkt“

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, A. D.: A contribution to chronogeometry. Can. J. Math.19, 1119–1128 (1967)

    Google Scholar 

  2. Alonso, J. L., Ynduráin, F. J.: On the continuity of causal automorphisms of space-time. Commun. math. Phys.4, 349–351 (1967)

    Google Scholar 

  3. Barucchi, G.: The group of timelike permutations. Nuovo Cimento55 A, 385–395 (1968)

    Google Scholar 

  4. Benz, W.: Zur Linearität relativistischer Transformationen. Jahresber. der DMV70, 100–108 (1967)

    Google Scholar 

  5. Borchers, H. J., Hegerfeldt, G. C.: The structure of space-time transformations. Commun. math. Phys.28, 259–266 (1972)

    Google Scholar 

  6. Brechner, B.: Topological groups which are not full homeomorphism groups. Duke Math. J.39, 97–99 (1972)

    Google Scholar 

  7. Cel'nik, F. A.: Topological structure of space in relativistic mechanics. Dokl. Akad. Nauk SSSR181 (1968); engl. transl.: Soviet Math. Dokl.9, 1151–1152 (1968)

    Google Scholar 

  8. Domiaty, R. Z.: Verallgemeinerte metrische Räume. I. Der innere Abstand. Bericht6 (1973) der Math-Stat. Sektion im Forschungszentrum Graz

  9. Ehlers, J.: General relativity and kinetic theory. In: Sachs, R. K. (Ed.): Relatività generale a cosmologia. New York: Academic Press 1971

    Google Scholar 

  10. Ehlers, J., Schild, A.: Geometry in a manifold with projective structure. Commun. math. Phys.32, 119–146 (1973)

    Google Scholar 

  11. Freudenthal, H.: Das Helmholtz-Liesche Raumproblem bei indefiniter Metrik. Math. Ann.156, 263–312 (1964)

    Google Scholar 

  12. Gheorghe, C., Mihul, E.: Causal groups of space-time. Commun. math. Phys.14, 165–170 (1969)

    Google Scholar 

  13. Göbel, R.: Die volle kausale Gruppe der Raum-Zeit, physikalischer Teil (II) der Habilitationsschrift, Würzburg 1973

  14. Guts, A. K.: Mappings that preserve cones in Lobachevskii space. Matem. Zametki13, 687–694 (1973) (russ.); engl. transl.: Consultants Bureau, 411–415 (1973); Plenum Publ. Co. New York, and Sov. Math. Doklady15, 416–419 (1974)

    Google Scholar 

  15. Hawking, S. W.: Singularities and the geometry of space time. Adams Prize Essay, Cambridge 1966

  16. Hawking, S. W., Ellis, G. F. R.: The large scale structure of space-time. Cambridge: University Press 1973

    Google Scholar 

  17. Hegerfeldt, G. C.: The Lorentz transformations: Derivation of linearity and scale factor. Nuovo Cimento10 A, 257–267 (1972)

    Google Scholar 

  18. Jordan, P., Ehlers, J., Kundt, W.: Strenge Lösungen der Feldgleichungen der allgemeinen Relativitätstheorie. Akad. der Wiss. und Literatur. Mainz 1960

  19. Kelley, J. L.: General topology. Princeton N.J.: Van Nostrand 1955

    Google Scholar 

  20. Kobayashi, S., Nomizu, K.: Foundations of differential geometry. New York: Interscience Publ. 1963

    Google Scholar 

  21. Loewner, C.: On semigroups in analysis and geometry. Bull. AMS70, 1–15 (1964)

    Google Scholar 

  22. Michél, L.: Relation entre symétries internes et invariance relativiste. In: Lurcat, F. (Ed.): Applications of mathematics to problems in theoretical physics, pp. 409–459. Gordon and Breach 1967

  23. Nanda, S.: Topology for Minkowski space. J. Math. Phys.12, 394–401 (1971)

    Google Scholar 

  24. Nevanlinna, R.: Raum, Zeit und Relativität. Stuttgart, Basel: Birkhäuser Verlag 1964

    Google Scholar 

  25. Penrose, R.: Techniques of differential topology in relativity. Philadelphia, Penn.: SIAM 1972

    Google Scholar 

  26. Rätz, J.: On isometries of generalized inner product spaces. SIAM J. Appl. Math.18, 6–9 (1970)

    Google Scholar 

  27. Rothaus, O. S.: Order isomorphisms of cones. Proc. AMS17, 1284–1288 (1966)

    Google Scholar 

  28. Robinson, I., Robinson, J.: Vacuum metrics without symmetry (unpublished) (1969)

  29. Süßmann, G.: Begründung der Lorentz-Gruppe allein mit der Symmetrie und Relativitätsannahmen. Z. Naturforsch.24a, 495–498 (1969)

    Google Scholar 

  30. Teppati, G.: An algebraic analogue of Zeeman's theorem. Nuovo Cimento54, 800–804 (1968)

    Google Scholar 

  31. Vilms, J.: Totally geodesic maps. J. Diff. Geom.4, 73–79 (1970)

    Google Scholar 

  32. Vock, V.: Theorie von Raum, Zeit und Gravitation. Berlin: Akademie Verlag 1960

    Google Scholar 

  33. Vogt, A.: Maps which preserve equality of distance. Studia Math.45, 43–48 (1973)

    Google Scholar 

  34. Vroegindewey, P. G.: An algebraic generalization of a theorem of E. C. Zeeman. Indagationes Math.36, 77–81 (1974)

    Google Scholar 

  35. Weyl, H.: Raum-Zeit Materie (1923), reprint: Berlin-Göttingen-Heidelberg: Springer 1961

  36. Woodhouse, M. N. J.: The differentiability and causal structure of space time. J. Math. Phys.14, 495–501 (1973)

    Google Scholar 

  37. Zeeman, E. C.: Causality implies the Lorentz-group. J. Math. Phys.5, 490–498 (1964)

    Google Scholar 

  38. Zeeman, E. C.: The topology of Minkowski space. Topology6, 161–170 (1967)

    Google Scholar 

  39. Knichal, V.: Die Bestimmung aller Transformationen, für welche die Null-Entfernung in den karthesischen Räumen mit indefiniter Metrik invariant bleibt. ATTI Sesto Congr. Mat. Ital. (11.–16.9.1959) 413–416

  40. Pimenov, P.I.: Mat. Zametki6, 361–369 (1969)

    Google Scholar 

  41. Alexandrov, A. D., Ovčinnikova, V. V.: Vestnik Leningrad. Univ.8, 95–110 (1953)

    Google Scholar 

  42. Hawking, S. W., King, A. R., McCarthy, P. J.: A new topology for curved space-time which incorporates the causal, differential and conformal structures. J. Math. Phys., to appear

  43. Göbel, R.: The smooth-path topology for curved space-time which incorporates the conformal structure and analytic Feynman tracks. J. Math. Phys., to appear

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Ehlers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göbel, R. Zeeman topologies on space-times of general relativity theory. Commun.Math. Phys. 46, 289–307 (1976). https://doi.org/10.1007/BF01609125

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01609125

Keywords

Navigation