Skip to main content
Log in

Infrared bounds, phase transitions and continuous symmetry breaking

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a new method for rigorously proving the existence of phase transitions. In particular, we prove that phase transitions occur in (φ·φ) 23 quantum field theories and classical, isotropic Heisenberg models in 3 or more dimensions. The central element of the proof is that for fixed ferromagnetic nearest neighbor coupling, the absolutely continuous part of the two point function ink space is bounded by 0(k −2). When applicable, our results can be fairly accurate numerically. For example, our lower bounds on the critical temperature in the three dimensional Ising (resp. classical Heisenberg) model agrees with that obtained by high temperature expansions to within 14% (resp. a factor of 9%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beijeren, H. van, Sylvester, G.: Phase transitions for continuous spin ising ferromagnets, Yeshiva preprint

  2. Bortz, A., Griffiths, R.: Phase transitions in anisotropic classical Heisenberg ferromagnets. Commun. math. Phys.26, 102–108 (1972)

    Google Scholar 

  3. Coleman, S.: There are no Goldstone bosons in two dimensions. Commun. math. Phys.31, 259–264 (1973)

    Google Scholar 

  4. Dobrushin, R. L., Shlosman, S. B.: Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics. Commun. math. Phys.42, 31–40 (1975)

    Google Scholar 

  5. Domb, C., Green, M.: Phase transitions and critical phenomena, Vol. 3, Series expansions for lattice models. New York-London: Academic Press 1974

    Google Scholar 

  6. Dunlop, F., Newman, C.: Multicomponent field theories and classical rotators. Commun. math. Phys.44, 223–235 (1975)

    Google Scholar 

  7. Ezawa, H., Swieca, A.: Spontaneous breakdown of symmetry and zero mass states. Commun. math. Phys.5, 330–336 (1967)

    Google Scholar 

  8. Feldman, J., Osterwalder, K.: The Wightman axioms and the mass gap for weakly coupled (φ4)3 quantum field theories. Ann. Phys., to appear

  9. Feldman, J., Osterwalder, K.: in preparation

  10. Fröhlich, J.: Schwinger functions and their generating functionals. I. Helv. Phys. Acta74, 265–306 (1974)

    Google Scholar 

  11. Fröhlich, J.: Existence and analyticity in the bare parameters of the λ(φ·φ)2—σφ 21 —μφ1 quantum field models; see Proc. Marseille Conf.

  12. Fröhlich, J.: in preparation, see also 1976 Schladming Lecture Notes

  13. Fröhlich, J., Simon, B.: Pure states for generalP(φ)2 Theories: Construction, regularity and variational equality, Princeton Preprint

  14. Fröhlich, J., Simon, B., Spencer, T.: Phase transitions and continuous symmetry breaking. Phys. Rev. Letters36, 804 (1976)

    Google Scholar 

  15. Gallavotti, G., Miracle-Sole, S.: Equilibrium states of the Ising model in the two phase region. Phys. Rev.5B, 2555 (1972)

    Google Scholar 

  16. Ginibre, J.: Existence of phase transitions for quantum lattice systems. Commun. math. Phys.14, 205–234 (1969)

    Google Scholar 

  17. Glimm, J., Jaffe, A.: The λ(φ4)2 quantum field theory without cutoffs. IV. Perturbations of the Hamiltonian. J. Math. Phys.13, 1568–1584 (1972)

    Google Scholar 

  18. Glimm, J., Jaffe, A.: Energy-momentum spectrum and vacuum expectation values in quantum field theory. I. J. Math. Phys.11, 3335–3338 (1970)

    Google Scholar 

  19. Glimm, J., Jaffe, A.: φ 42 quantum field model in the single phase region: Differentiability of the mass and bounds on critical exponents. Phys. Rev.D10, 536–539 (1974)

    Google Scholar 

  20. Glimm, J., Jaffe, A.: Positivity of the (φ4)3 Hamiltonian. Fortschr. Physik21, 327–376 (1973)

    Google Scholar 

  21. Glimm, J., Jaffe, A., Spencer, T.: Phase transitions for φ 42 quantum fields. Commun. math. Phys.45, 203–216 (1975)

    Google Scholar 

  22. Griffiths, R.: Phase transitions. In: Statistical mechanics and quantum field theory (ed. De Witt and Stora). New York-London: Gordon and Breach 1970

    Google Scholar 

  23. Guerra, F.: Proc. Marseille Conf. 1976 and Proc. Bielefeld Symposium, 1976

  24. Guerra, F., Rosen, L., Simon, B.: Nelson's symmetry and the infinite volume behavior of the vacuum inP(φ)2. Commun. math. Phys.27, 10–22 (1972)

    Google Scholar 

  25. Guerra, F., Rosen, L., Simon, B.: TheP(φ)2 euclidean quantum field theory as classical statistical mechanics. Ann. Math.101, 111–259 (1975)

    Google Scholar 

  26. Herbst, I.: Some remarks on canonical quantum field theories. Princeton Preprint, 1976

  27. Hohenberg, P.: Existence of long-range order in one and two dimensions. Phys. Rev.158, 383 (1967)

    Google Scholar 

  28. Kac, M.: On applying mathematics: Reflections and examples. Quart. Appl. Math.30, 17–29 (1972)

    Google Scholar 

  29. Källen, G.: On the definitions of the renormalization constants in quantum electrodynamics. Helv. Phys. Acta25, 417–434 (1952)

    Google Scholar 

  30. Katsura, S., Inawashiro, S., Abe, Y.: Lattice Green's functions for the simple cubic lattice in terms of a Mellin-Barnes type integral. J. Math. Phys.12, 895–899 (1971)

    Google Scholar 

  31. Kunz, H., Pfister, Ch.-Ed., Vuillermot, P. A.: Inequalities for some classical spin vector models. Bielefeld Preprint

  32. Lee, T. D., Yang, C. N.: Statistical theory of equations of state and phase transitions. II. Lattice Gas and Ising Model. Phys. Rev.87, 410–419 (1952)

    Google Scholar 

  33. Lehmann, H.: Über Eigenschaften von Ausbreitungsfunktionen and Renormierungskonstanten quantisierter Felder. Nuovo Cimento11, 417–434 (1954)

    Google Scholar 

  34. Magnen, J., Seneor, R.: The infinite volume limit of the φ 43 model. Ann. Inst. Henri Poincaré, to appear

  35. Malyshev, S.: Phase transitions in classical Heisenberg ferromagnets with arbitrary parameter of anisotropy. Commun. math. Phys.40, 75–82 (1975)

    Google Scholar 

  36. Mermin, N. D.: Absence of ordering in certain classical systems. J. Math. Phys.8, 1061–1064 (1967)

    Google Scholar 

  37. Mermin, N. D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one or two dimensional isotropic Heisenberg models. Phys. Rev. Letters17, 1133 (1966)

    Google Scholar 

  38. Park, Y.: Lattice approximation of the (λφ4 − μφ)3 field theory in a finite volume. J. Math. Phys.16, 1065 (1975)

    Google Scholar 

  39. Park, Y.: Uniform bounds on the pressure of the λφ 43 model, and uniform bounds on the Schwinger functions in Boson field models. Bielefeld Preprints

  40. Pirogov, S. A., Sinai, Ya. G.: Phase transitions of the first kind for small perturbations of the ising model. Funct. Anal. Appl.8, 21–25 (1974)

    Google Scholar 

  41. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. II, Fourier Analysis, Self-Adjointness. New York-London: Academic Press 1975

    Google Scholar 

  42. Robinson, D.: A proof of the existence of phase transitions in the anisotropic Heisenberg model. Commun. math. Phys.14, 195 (1969)

    Google Scholar 

  43. Ruelle, D.: Statistical mechanics. New York: Benjamin 1969

    Google Scholar 

  44. Seiler, E., Simon, B.: Nelson's symmetry and all that in the Yukawa2 and φ 43 field theories. Ann. Phys. to appear

  45. Simon, B.: Correlation inequalities and the mass gap inP(φ)2. II. Uniqueness of the vacuum in a class of strongly coupled theories. Ann. Math.101, 260–267 (1975)

    Google Scholar 

  46. Stanley, H.: Phys. Rev.176, 718 (1968)

    Google Scholar 

  47. Symanzik, K.: Commun. math. Phys.6, 228 (1967)

    Google Scholar 

  48. Watson, G. N.: Three triple integrals. Quart. J. Math.10, 266 (1939)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. L. Lebowitz

Research supported by USNSF under grants GP-38048 and MPS-74-13252

A. Sloan Fellow; also in the Department of Physics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröhlich, J., Simon, B. & Spencer, T. Infrared bounds, phase transitions and continuous symmetry breaking. Commun.Math. Phys. 50, 79–95 (1976). https://doi.org/10.1007/BF01608557

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01608557

Keywords

Navigation