Communications in Mathematical Physics

, Volume 46, Issue 2, pp 153–166 | Cite as

Scattering from impurities in a crystal

  • F. Bentosela


A time independent scattering theory for a particle in a crystal with impurity is given. It is shown that the scattered wave is the solution of a Lippman Schwinger equation, and that the existence of bound states or narrow resonances is related more to the band structure than to the form of the impurity potential.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Band Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kato, T., Kuroda, S.-T.: Theory of simple scattering and eigenfunction expansions. In: Functional analysis and related fields, Browder (Ed.). Berlin-Heidelberg-New York: Springer 1970Google Scholar
  2. 2.
    Kuroda, S.-T.: A stationary method of scattering and some applications. In: Proceedings of the Int. Conf. on Functional Analysis. University of Tokyo Press 1970Google Scholar
  3. 3.
    Kosicki-Paul, W.: Phys. Rev. Letters17, 246–249 (1966);17, 1175–1177 (1966)Google Scholar
  4. 4.
    Onton, A.: Phys. Rev.186, 786–790 (1969); B4, 4449–4452 (1971)Google Scholar
  5. 5.
    Bassani, F.: Theory of imperfect crystalline solids, Trieste lectures, p. 265. Vienna: IAEA 1970Google Scholar
  6. 6.
    Preziosi, B.: Nuovo Cimento6 B, 131–138 (1971)Google Scholar
  7. 7.
    Bassani, F., Iadonisi, G., Preziosi, B.: Rept. Progr. Phys.37, Part 3 (1974)Google Scholar
  8. 8.
    Ikebe, T.: Arch. Rat. Mech. Anal.5, 1–34 (1960)Google Scholar
  9. 9.
    Simon, B.: Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton: Princeton University Press 1971Google Scholar
  10. 10.
    Thomas, L.: Commun. math. Phys.33, 339 (1973)Google Scholar
  11. 11.
    Lenahan, T.A.: On quantum mechanical scattering in periodic media. Ph.D. Thesis, in Applied Mathematics. University of Pennsylvania (1970)Google Scholar
  12. 12.
    Troianiello, G.: J. Math. Phys.15, 2048 (1974)Google Scholar
  13. 13.
    Guillot, J.-C.: Report of the Department of Mathematics. University of Paris-Nord (1974)Google Scholar
  14. 14.
    Avron, J., Grossmann, A., Rodriguez, R.: Rept. Math. Phys.5, 113 (1974)Google Scholar
  15. 15.
    Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  16. 16.
    Balslev, E.: Math. Scand.19, 193 (1966)Google Scholar
  17. 17.
    Avron, J., Grossmann, A., Rodriguez, R., Zak, J.: Preprint CNRS-C.P.T. 1975Google Scholar
  18. 18.
    Callaway, J.: J. Math. Phys.5, 783–798 (1964)Google Scholar
  19. 19.
    Phillips, J.C.: Phys. Rev.104, 1263 (1956)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • F. Bentosela
    • 1
  1. 1.Université d'Aix-Marseille II, U.E.R. de Luminy et Centre de Physique ThéoriqueCNRS MarseilleMarseilleFrance

Personalised recommendations