Advertisement

Communications in Mathematical Physics

, Volume 46, Issue 2, pp 119–134 | Cite as

Hyperfunction quantum field theory

  • S. Nagamachi
  • N. Mugibayashi
Article

Abstract

The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not containC functions with compact support. In spite of this defect the support concept ofH-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory.

Keywords

Neural Network Fourier Statistical Physic Field Theory Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Streater, R. F., Wightman, A. S.: PCT, spin and statistics, and all that. New York-Amsterdam: Benjamin 1964Google Scholar
  2. 2.
    Jaffe, A.: Phys. Rev.158, 1454–1461 (1967)Google Scholar
  3. 3.
    Constantinescu, F.: J. math. Phys.12, 293–298 (1971)Google Scholar
  4. 4.
    Lomsadze, Yu. M., Krivsky, I. Yu., Shuba, Yo. M.: Kiev preprints ITP-72-62E 1972, ITP-74-130E 1974, ITP-74-134E 1974Google Scholar
  5. 5.
    Osterwalder, K., Schrader, R.: Commun. math. Phys.31, 83–112 (1973);42, 281–305 (1975)Google Scholar
  6. 5a.
    Osterwalder, K.: Euclidean Green's functions and Wightman distributions. In: Constructive quantum field theory, Lecture Notes in Physics, No. 25, pp. 71–93. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  7. 6.
    Kawai, T.: J. Fac. Sci. Univ. Tokyo Sec. IA17, 467–517 (1970)Google Scholar
  8. 7.
    Ito, Y., Nagamachi, S.: J. Math. Tokushima Univ. (to appear)Google Scholar
  9. 8.
    Constantinescu, F., Thalheimer, W.: Commun. math. Phys.38, 299–316 (1974)Google Scholar
  10. 9.
    Gel'fand, I. M., Shilov, G. E.: Generalized functions, Vol. 2. New York-London: Academic Press 1968Google Scholar
  11. 10.
    Mityagin, B. S.: Trudy Moskov Mat. Obšč.9, 317–328 (1960)Google Scholar
  12. 11.
    Ion, P. D. F., Kawai, T.: Theory of vector-valued hyperfunctions. RIMS preprint (1973)Google Scholar
  13. 12.
    Komatsu, H.: J. Math. Soc. Japan19, 366–383 (1967)Google Scholar
  14. 13.
    Treves, F.: Topological vector spaces, distributions, and kernels. New York-London: Academic Press 1967Google Scholar
  15. 14.
    Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo-differential equations. In: Proceedings of Katata conference 1971, Lectures Notes in Mathematics, No. 287, pp. 264–529. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  16. 15.
    Morimoto, M.: J. Fac. Sci. Univ. Tokyo Sec. IA17, 215–239 (1970)Google Scholar
  17. 16.
    Sato, M.: Sûgaku no Ayumi15, 9–72 (1970) (in Japanese, Notes by Kashiwara)Google Scholar
  18. 17.
    Jost, R.: The general theory of quantized fields. Providence: Amer. Math. Soc. 1965Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • S. Nagamachi
    • 1
  • N. Mugibayashi
    • 2
  1. 1.Department of Mathematics, Faculty of EngineeringTokushima UniversityTokushimaJapan
  2. 2.Department of Electrical EngineeringKobe UniversityKobeJapan

Personalised recommendations