The Soviet Journal of Atomic Energy

, Volume 10, Issue 6, pp 574–582 | Cite as

Neutron yield of the reactions Li6(t,n) and Li7(t,n)

  • A. K. Val'mer
  • P. I. Vatset
  • L. Ya. Kolesnikov
  • S. G. Tonapetyan
  • K. K. Chernyavskii
  • A. I. Shpetnyi
Article

Abstract

The differential cross section is determined for the formation of neutrons at an angle of 0 ° in the reactions Li6(t,n) and Li7(t, n) in the 0.175–2.4 Mev triton energy range. In the reaction Li6(t,n) resonance in the neutron yield is observed at Et = 1.875 Mev, corresponding to a Be9 excitation level of 18.936 Mev.

Two resonances are detected in the neutron yield of the reaction Li7(t, n): at Et = 0.765 Mev and Et = 1.735 Mev, which indicates the presence of Be10 nucleus excitation levels of 17.78 and 18.46 Mev, respectively. The cross section of the reaction Li6(t, n) in resonance is dσ/dΩ(0 °)res = 37.2 mb/sr; for the reaction Li7 (t, n) the cross section at the first resonance is dσ/dΩ(0 °)res = 95 mb/sr; at the second resonance dσ/dΩ(0 °)res = 159 mb/sr.

The angular distributions of neutrons are given for the interval of angles 0–135 ° (every 15 °) for triton energies of 0.358, 0.559, 1.006, 1.218, 1.370, 1.572, 2.123 Mev.

The total cross section for the formation of neutrons at Et = 2.123 Mev in the reaction Li6 (t,n) is equal to 324±32.3 mb in the reaction Li7 (t, n) to 1332±83.3 mb.

Keywords

Energy Range Angular Distribution Total Cross Section Differential Cross Section Differential Cross 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. Almqwist. Canad. J. Research28A, 433 (1950).Google Scholar
  2. 2.
    R. Crews. Phys. Rev.82, 100 (1951).Google Scholar
  3. 3.
    F. Aizenberg-Selove. N. Jarmie, E. Haddad. Bull. Amer. Phys. Soc.4, 258 (1959).Google Scholar
  4. 4.
    J. Sanders et al. Phys. Rev.79, 238 (1950).Google Scholar
  5. 5.
    W. Leland, H. Agnew. Phys. Rev.82, 559 (1951).Google Scholar
  6. 6.
    K. Allen et al. Phys. Rev.82, 262 (1951).Google Scholar
  7. 7.
    N. Jarmie. Phys. Rev.98, 41 (1955).Google Scholar
  8. 8.
    K. Allen et al. Phys. Rev.96, 684 (1954).Google Scholar
  9. 9.
    J. Dewan et al. Phys. Rev.86, 416 (1952).Google Scholar
  10. 10.
    E. Almqwist, T. Pepper, P. Lorrian. Canad. J. Phys.32, 621 (1954).Google Scholar
  11. 11.
    T. Pepper et al. Phys. Rev.85, 155 (1952).Google Scholar
  12. 12.
    A. K. Bal'ter, P. I. Vatset, L. Ya. Kolesnikov, S. G. Tonapetyan, K. K. Chernyavskii, A. I. Shpetnyi. Zh. éksperim, i teor. fiz.,40, No. 5 (1961).Google Scholar
  13. 13.
    P. I. Vatset, S. G. Tonanetyan, G. A. Dorofeev. Atomnaya énergiya7, No. 2, 172 (1959).Google Scholar

Copyright information

© Consultants Bureau Enterprises, Inc. 1962

Authors and Affiliations

  • A. K. Val'mer
  • P. I. Vatset
  • L. Ya. Kolesnikov
  • S. G. Tonapetyan
  • K. K. Chernyavskii
  • A. I. Shpetnyi

There are no affiliations available

Personalised recommendations