The time projection chamber for heavy-ion collisions: Trends and perspectives

Abstract

The very large charged-particle multiplicities expected in a high-energy nucleon-nucleon collision, together with the wide range of energy loss by ionization, makes the conception of a tracking detector extremely challenging. One device, the time projection chamber, widely used in particle-physics experimentation, seems very promising in this context. In the present paper, after a brief summary of the operating principles and of the performances achieved in the existing detectors, I will discuss in more detail the expected performances in a high-multiplicity environment, as well as the recognized problems arising from the large charge densities detected. Some alternative devices that might overcome the recognized limitations of the standard design will also be described.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. Charpak et al.: Nucl. Instrum. Methods 62 (1968) 235

    Article  Google Scholar 

  2. 2.

    G. Charpak, D. Rahm, H. Steiner: Nucl. Instrum Methods 80 (1970) 13

    ADS  Article  Google Scholar 

  3. 3.

    G. Charpak: Ann. Rev. Nucl. Sci. 20 (1970) 195

    ADS  Article  Google Scholar 

  4. 4.

    F. Sauli: CERN 77-09 (1979)

  5. 5.

    G. Charpak, F. Sauli: Ann. Rev. Nucl. Part. Sci 34 (1984) 285

    ADS  Article  Google Scholar 

  6. 6.

    A.R. Clark et al.: Proposal for a PEP facility based on the TPC, REP-4 (1976)

  7. 7.

    J.A. Macdonald (ed): The Time Projection Chamber: AIP Conf. Proc. 108 (1984)

  8. 8.

    ALEPH Technical report, CERN/LEPC/83-2 (1983)

  9. 9.

    DELPHI Technical proposal, CERN/LEPC/83-3 (1983)

  10. 10.

    S.R. Amendolia et al.: Nucl. Instrum. methods A 252 (1986) 399

    ADS  Article  Google Scholar 

  11. 11.

    F. Sauli: Basic processes in the time projection like detectors, in [7, p. 171] The Time Projection Chamber: AIP Conf. Proc. 108 (1984)

  12. 12.

    Event generated by the Wisconsin University group in ALEPH

  13. 13.

    H. Aihara et al.: IEEE Trans. Nucl. Sci. NS-30 (1983) 63

    ADS  Article  Google Scholar 

  14. 14.

    H.G. Pugh et al.: A TPC for the study of nucleus-nucleus collisions at the Bevalac, Berkeley report LBL-22314 (1986)

  15. 15.

    L. Rolandi: Space resolution of the TPC, Trieste report INFN/AE-86/5 (1986)

  16. 16.

    E. Gatti et al.: Nucl. Instrum Methods 163 (1979) 83

    ADS  Article  Google Scholar 

  17. 17.

    E. Mathieson, T.J. Harris: Nucl. Instrum. Methods 159 (1979) 483

    ADS  Article  Google Scholar 

  18. 18.

    H. Van der Graaf, J.P. Wagenaar: Nucl. Instrum. Methods A252 (1986) 311

    ADS  Article  Google Scholar 

  19. 19.

    R. Bellazzini et al.: IEEE Trans. Nucl. Sci. NS-32 (1985) 389

    ADS  Article  Google Scholar 

  20. 20.

    S. Amendolia et al.: Nucl. Instrum. Methods A 252 (1986) 392

    ADS  Article  Google Scholar 

  21. 21.

    S.R. Amendolia et al.: Nucl. Instrum. Methods A 235 (1985) 296

    ADS  Article  Google Scholar 

  22. 22.

    M. Benetta et al.: IEEE Trans. Nucl. Sci. NS-32 (1985) 605

    ADS  Article  Google Scholar 

  23. 23.

    D. Bryman et al.: in [7, p. 12] The Time Projection Chamber: AIP Conf. Proc. 108 (1984)

  24. 24.

    W. Blum et al.: Nucl. Instrum. Methods A252 (1986) 407

    ADS  Article  Google Scholar 

  25. 25.

    S.R. Amendolia et al.: Nucl. Instrum. Methods 217 (1983) 317

    Article  Google Scholar 

  26. 26.

    H. Hilke: Nucl. Instrum. Methods 252 (1986) 169

    ADS  Article  Google Scholar 

  27. 27.

    R.D. Hever, A. Wagner: Nucl. Instrum. Methods A265 (1988) 11

    ADS  Article  Google Scholar 

  28. 28.

    D. Schaile, O. Schaile, J. Schwarz: Nucl. Instrum. Methods A242 (1986) 247

    ADS  Article  Google Scholar 

  29. 29.

    A. Preisert: Preliminary results of the two-track resolution in TPC90, ALEPH TPC note 85-16 (1985)

  30. 30.

    D. Friedrich et al.: Nucl. Instrum. Methods 158 (1979) 81

    ADS  Article  Google Scholar 

  31. 31.

    A. Breskin et al.: Nucl. Instrum. Methods 178 (1980) 11

    ADS  Article  Google Scholar 

  32. 32.

    P. Nemethy et al.: Nucl. Instrum. Methods 212 (1983) 273

    Article  Google Scholar 

  33. 33.

    S.R. Amendolia et al.: Nucl. Instrum. Methods A234 (1985) 47

    ADS  Article  Google Scholar 

  34. 34.

    B.A. Bryman et al.: Nucl. Instrum. Methods A234 (1985) 42

    ADS  Article  Google Scholar 

  35. 35.

    S.R. Amendolia et al.: Nucl. Instrum. Methods A239 (1985) 192

    ADS  Article  Google Scholar 

  36. 36.

    S.S. Amendolia et al.: Nucl. Instrum. Methods A252 (1986) 403

    ADS  Article  Google Scholar 

  37. 37.

    C. Brand et al.: Nucl. Instrum. Methods A252 (1986) 413

    ADS  Article  Google Scholar 

  38. 38.

    J. Kent: Positive ion suppression with untriggered TPC, Collège de France report LPC 84-17 (1984)

  39. 39.

    A.H. Walenta: Phys. Scr. 23 (1981) 354

    ADS  Article  Google Scholar 

  40. 40.

    I. Va'vra: IEEE Trans. Nucl. Sci. NS-30 (1983) 82

    ADS  Article  Google Scholar 

  41. 41.

    H. Freshe et al.: Nucl. Instrum. Methods 156 (1978) 87

    ADS  Article  Google Scholar 

  42. 42.

    P.W. Benjamin, C.D. Kernshell, J. Redfearn: Nucl. Instrum. Methods 59 (1968) 77

    ADS  Article  Google Scholar 

  43. 43.

    S. Behrends, A.C. Melissinos: Nucl. Instrum. Methods 188 (1981) 521

    ADS  Article  Google Scholar 

  44. 44.

    t. Kobayashi et al. Berkeley report LBL-22164 (1986)

  45. 45.

    C. Gruhn: Nucl. Phys. A461 (1987) 391

    ADS  Article  Google Scholar 

  46. 46.

    S.J. Lindenbaum et al.: Nucl. Phys. A461 (1987) 431

    ADS  Article  Google Scholar 

  47. 47.

    W.A. Love: TPC spectromerers for AGS and RICH. This Conference

  48. 48.

    A. Peisert: Nucl. Instrum. Methods 217 (1983) 229

    Article  Google Scholar 

  49. 49.

    H.J. Hilke: Nucl. Instrum. Methods 217 (1983) 189

    Article  Google Scholar 

  50. 50.

    G. Hempel, F. Hopkins, G. Schatz: Nucl. Instrum. Methods 131 (1975) 445

    ADS  Article  Google Scholar 

  51. 51.

    H. Stelzer: Nucl. Instrum. Methods 133 (1976) 409

    ADS  Article  Google Scholar 

  52. 52.

    J. Sernicki: Nucl. Instrum. Methods 212 (1983) 195

    Article  Google Scholar 

  53. 53.

    A. Peisert, F. Sauli: Nucl. Instrum. Methods A247 (1986) 453

    ADS  Article  Google Scholar 

  54. 54.

    C. Gruhn et al.: Nucl. Instrum. Methods A247 (1986) 460

    ADS  Article  Google Scholar 

  55. 55.

    F. Sauli: Three-dimensional gaseous detectors, preprint CERN-EP/87-193 (1987), Invited talk at the London Conf. on Position-Sensitive Detectors, London, 1987 (to be published in Nucl. Instrum. Methods)

  56. 56.

    R. Bouclier et al.: Nucl. Instrum. Methods A252 (1986) 373

    ADS  Article  Google Scholar 

  57. 57.

    R. Bouclier et al.: Nucl. Instrum. Methods A265 (1988) 78

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sauli, F. The time projection chamber for heavy-ion collisions: Trends and perspectives. Z. Phys. C - Particles and Fields 38, 339–352 (1988). https://doi.org/10.1007/BF01574558

Download citation

Keywords

  • Field Theory
  • Elementary Particle
  • Quantum Field Theory
  • Charge Density
  • Energy Loss