Mathematische Annalen

, Volume 290, Issue 1, pp 441–462 | Cite as

Classical projective geometry and arithmetic groups

  • Mark McConnell


Projective Geometry Arithmetic Group Classical Projective Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Al]
    Alexandrov, P.S.: Diskrete Räume. Mat. Sb. (N.S.)2, 501–518 (1937)Google Scholar
  2. [AMRT]
    Ash, A., Mumford, D., Rapoport, M., Tai, Y.: Smooth compactifications of locally symmetric varieties. In: Lie groups: history, frontiers, and applications, vol. 4, Brookline, Massachusetts, USA, Math. Sci. Press 1975Google Scholar
  3. [As 1]
    Ash, A.: Deformation retracts with lowest possible dimension of arithmetic quotients of self-adjoint homogeneous cones. Math. Ann.225, 69–76 (1977)Google Scholar
  4. [As 2]
    Ash, A.: Cohomology of congruence subgroups of SL(n,ℤ). Math. Ann.249, 55–73 (1980)Google Scholar
  5. [As 3]
    Ash, A.: Small-dimensional classifying spaces for subgroups of general linear groups. Duke Math. J.51, 459–468 (1984)Google Scholar
  6. [Ba]
    Barnes, E.S.: The complete enumeration of extreme senary forms. Philos. Trans. R. Soc. Lond. A249, 461–506 (1957)Google Scholar
  7. [Bo]
    Bourbaki, N.: Groupes et algèbres de Lie, Chap. III. In: Elém. Math.37, 1349 (1972)Google Scholar
  8. [CS]
    Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups. Berlin Heidelberg New York: Springer 1988Google Scholar
  9. [Co]
    Coxeter, H.S.M.: Extreme forms. Can. J. Math.3, 391–441 (1951)Google Scholar
  10. [GM]
    Goresky, M., MacPherson, R.: Stratified Morse theory (the book). Berlin Heidelberg New York: Springer 1988Google Scholar
  11. [Ha]
    Hartshorne, R.: Foundations of projective geometry. Reading, Mass.: Benjamin/Cummings 1967Google Scholar
  12. [Ja]
    Jacobson, N.: Basic algebra I. San Francisco: Freeman 1974Google Scholar
  13. [LS 1]
    Lee, R., Szczarba, R.H.: On the homology and cohomology of congruence subgroups. Invent. Math.33, 15–53 (1976)Google Scholar
  14. [LS 2]
    Lee, R., Szczarba, R.H.: On the torsion inK 4(ℤ) andK 5(ℤ). Duke Math. J.45, 101–129 (1978)Google Scholar
  15. [MM 1]
    MacPherson, R., McConnell, M.: Classical projective geometry and modular varieties. In: Algebraic analysis, geometry, and number theory. Proceedings of the JAMI Inaugural conference. Igusa, J.-I. (ed.) Baltimore: J. Hopkins Univ. Press 1989Google Scholar
  16. [MM 2]
    MacPherson, R., McConnell, M.: Explicit reduction theory for Sp (4,ℤ) (to appear)Google Scholar
  17. [Na]
    Namikawa, Y.: Toroidal compactifications of Siegel spaces. (Lect. Notes Math., vol. 812) Berlin Heidelberg New York: Springer 1980Google Scholar
  18. [Se]
    Serre, J.-P.: Arithmetic groups. In: Homological group theory. London Math. Soc. Lecture Note Ser. 36, ed. by Wall, C.T.C., Cambridge Univ. Press, Cambridge, 1979, pp. 105–136Google Scholar
  19. [So 1]
    Soulé, C.: The cohomology of SL(3,ℤ). Topology17, 1–22 (1978)Google Scholar
  20. [So 2]
    Soulé, C.: Thèse, Univ. Paris VII (1979)Google Scholar
  21. [Št]
    Štogrin, M.I.: Locally quasi-densest lattice packings of spheres. Soviet Math. Doklady15, 1288–1292 (1974)Google Scholar
  22. [V 1]
    Voronoi, G.: Sur quelques propriétés des formes quadratiques positives parfaites. Crelle133, 97–178 (1908)Google Scholar
  23. [V 2]
    Voronoi, G.: Recherches sur les paralléloèdres primitifs. Crelle134, 198–287 (1980)Google Scholar
  24. [V 3]
    Voronoi, G.: Domaines de formes quadratiques correspondant aux différents types de paralléloèdres primitifs. Crelle136, 67–181 (1909)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Mark McConnell
    • 1
  1. 1.Department of MathematicsOklahoma State UniversityStillwaterUSA

Personalised recommendations