Mathematische Annalen

, Volume 290, Issue 1, pp 247–276 | Cite as

L-functions attached to Jacobi forms of degreen

II. Functional equation
  • Atsushi Murase


Degreen Jacobi Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrianov, A.N., Kalinin, V.L.: On the analytic properties of standard zeta functions of Siegel modular forms. Math USSR Sb.35, 1–17 (1979)Google Scholar
  2. 2.
    Böcherer, S.: Über die Funktionalgeleichung automorphenL-Funktionen zur Siegelschen Modulgruppe. J. Reine Angew. Math.352, 146–168 (1985)Google Scholar
  3. 3.
    Garrett, P.B.: Integral representations of Eisenstein series andL-functions. In: Number theory, trace formulas and discrete groups, Aubert, K.E., Bombieri, E., Goldfeld, D. (eds.). New York San Francisco London: Academic Press 1989Google Scholar
  4. 4.
    Gindikin, S.G., Karpelevicz, F.I.: On an integral connected with symmetric Riemannian spaces of negative curvature. Am. Math. Soc. Transl.85, 249–258 (1969)Google Scholar
  5. 5.
    Kitaoka, Y.: Dirichlet series in the theory of Siegel modular forms. Nagoya Math. J.95, 73–84 (1984)Google Scholar
  6. 6.
    Langlands, R.P.: On the functional equations satisfied by Eisenstein series. (Lecture Notes in Math., Vol. 544). Berlin Heidelberg New York: Springer 1976Google Scholar
  7. 7.
    Macdonald, I.G.: Spherical functions on a group ofp-adic type. Publ of the Ramanujan Inst.2. Bombay 1971Google Scholar
  8. 8.
    Murase, A.:L-functions attached to Jacobi forms of degreen, Part I. The basic identity. J. Reine Angew. Math.401, 122–156 (1989)Google Scholar
  9. 9.
    Murase, A.: Functional equation of singular series for quadratic forms. Preprint (1989)Google Scholar
  10. 10.
    Piatetski-Shapiro, I.I., Rallis, S.:L-functions for the Classical Groups, notes prepared by Cogdell, J. In: Explicit Constructions of AutomorphicL-functions. (Lecture Notes in Math., Vol. 1254). Berlin Heidelberg New York: Springer 1987Google Scholar
  11. 11.
    Satake, I.: Fock Representations and Theta-Functions. In: Advances in the Theory of Riemann Surfaces, Proc. of the 1969 Stony Brook Conf. Ann. Math. Stud.66, 39–405 (1971)Google Scholar
  12. 12.
    Shimura, G.: Confluent hypergeometric functions on tube domains. Math. Ann.260, 269–302 (1982)Google Scholar
  13. 13.
    Shimura, G.: On Eisenstein series. Duke Math. J.50, 417–476 (1983)Google Scholar
  14. 14.
    Shintani, T.: Unpublished notesGoogle Scholar
  15. 15.
    Sugano, T.: Jacobi forms and theta lifting. PreprintGoogle Scholar
  16. 16.
    Yamazaki, T.: Jacobi forms and a Maass relation for Eisenstein senes. J. Fac. Sci. Univ. Tokyo33, 295–310 (1986)Google Scholar
  17. 17.
    Ziegler, C.: Jacobi forms of higher degree. Dissertation. Heidelberg 1988Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Atsushi Murase
    • 1
    • 2
  1. 1.Max-Planck-Institut für MathematikBonn 3Germany
  2. 2.Department of Mathematics, Faculty of ScienceKyoto Sangyo UniversityKyotoJapan

Personalised recommendations