Mathematische Annalen

, Volume 290, Issue 1, pp 209–245 | Cite as

All constant mean curvature tori inR3,S3,H3 in terms of theta-functions

  • A. I. Bobenko


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abresch, U.: Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math.394, 169–192 (1987)Google Scholar
  2. 2.
    Abresch, U.: Old and new periodic solutions of the sinh-Gordon equation. In: Tromba, A. (ed.) Seminar on new results in nonlinear partial differential equations. (Aspects Math. vol. E10, pp. 37–73) Braunschweig Wiesbaden: Wieweg 1987Google Scholar
  3. 3.
    Alexandrov, A.D.: Uniqueness theorems for surfaces in the large, V. Vestn. Leningr. Univ.13, 5–8 (1958); Transl., II. Ser., Am. Math. Soc.21, 412–416 (1962)Google Scholar
  4. 4.
    Babich, M.V.: Real finite-gap solutions of equations of the sine-Gordon type. Algebra i Analiz2(3), 63–77 (1990)Google Scholar
  5. 5.
    Baker, H.F.: Abel's Theorem and the Allied Theory Including the Theory of Theta Functions. Cambridge: Cambridge University Press 1897Google Scholar
  6. 6.
    Barbashov, B.M., Nesterenko, V.V.: Geometrical approach to the nonlinear equations in the relativistic string theory. In: Physics of elementary particles and atomic nuclei 15, pp. 1032–1072. Moscow: Energoatomizdat 1984Google Scholar
  7. 7.
    Belokolos, E.D., Bobenko, A.I., Enolskii, V.Z., Matveev, V.B.: Algebraic-geometric principles of superposition of finite-zone solutions of integrable nonlinear equations. Usp. Mat. Nauk41, 3–42 (1986); Russ. Math. Surv.41, 1–49 (1986)Google Scholar
  8. 8.
    Beardon, A.F.: The geometry of discrete groups. Berlin Heidelberg New York: Springer 1983Google Scholar
  9. 9.
    Blaschke, W.: Vorlesungen über Differentialgeometrie. Berlin: Springer 1927Google Scholar
  10. 10.
    Bobenko, A.I.: Schottky uniformization and finite-gap integration. Dokl. Akad. Nauk SSSR295, 268–272 (1987); Sov. Math. Dokl.36, 38–42 (1988)Google Scholar
  11. 11.
    Bobenko, A.I.: Eigenfunctions of the Dirichlet and Neuman problems for the elliptic sinh-Gordon equation on a rectangle. In: Mathematical problems of wave propagation theory. 19. Zapn. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova179, 32–36 (1989)Google Scholar
  12. 12.
    Bobenko, A.I.: Finite-gap constant mean curvature tori inR 3 andS 3. Prepr. Leningr. Otd. Mat. Inst. Steklova, E-3-89 Leningrad: 1989Google Scholar
  13. 13.
    Bobenko, A.I.: Integrable surfaces. Funkts. Anal. Prilozh.24 (3), 68–69 (1990)Google Scholar
  14. 14.
    Bobenko, A.I., Bordag, L.A.: Qualitative analysis of the finite-gap solutions of the KdV equation with the help of automorphic approach. In: Mathematical problems of wave propagation theory. 17. Zapn. Nauchn. Semin. Leningr. Otd. Math. Inst. Steklova165, 31–41 (1987)Google Scholar
  15. 15.
    Bobenko, A.I., Bordag, L.A.: Periodic multiphase solutions of the Kadomsev-Petviashvili equation. J. Phys. A Math. Gen.22, 1259–1274 (1989)Google Scholar
  16. 16.
    Burnside, W.: On a class of automorphic functions. Proc. Lond. Math. Soc.23, 49–88 (1892)Google Scholar
  17. 17.
    Burnside, W.: Further note on automorphic functions. Proc. Lond. Math. Soc.23, 281–295 (1892)Google Scholar
  18. 18.
    Date, E.: Multi-soliton solutions and quasi-periodic solutions of nonlinear equations of sine-Gordon type. Osaka J. Math.19, 125–158 (1982)Google Scholar
  19. 19.
    Dubrovin, B.A.: Matrix finite-gap operators. In: Modern problems in mathematics, vol. 23, pp. 33–78. Itogi Nauki i Tekhniki. Moscow: VINITI 1983Google Scholar
  20. 20.
    Dubrovin, B.A.: Theta-functions and nonlinear equations. Usp. Mat. Nauk36, 11–81 (1981); Russ. Math. Surv.36, 11–92 (1981)Google Scholar
  21. 21.
    Dubrovin, B.A., Krichever, I.M., Novikov, S.P.: Integrable systems. I. In: Modern problems in mathematics. Fundamental developments, vol 4 (Dynamical systems 4), pp. 179–285. Itogi Nauki i Takhniki, Moscow: VINITI 1985Google Scholar
  22. 22.
    Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Nonlinear equations of KdV type, finite-zone linear operators and abelian varieties. Usp. Mat. Nauk31, 55–136 (1976) Russ. Math. Surv.31, 59–146 (1976)Google Scholar
  23. 23.
    Eschenburg, J.: Willmore surfaces and Moebius geometry. (Preprint 1988)Google Scholar
  24. 24.
    Faddeev, L.D., Takhtajan, L.A.: Hamiltonian method in the theory of solitons. Berlin Heidelberg New York: Springer 1987Google Scholar
  25. 25.
    Fay, J.D.: Theta-functions on Riemann surfaces. (Lect. Notes Math., vol. 352) Berlin Heidelberg New York: Springer 1973Google Scholar
  26. 26.
    Ferus, D., Pedit, F.:S 1-equivariant minimal tori inS 4 andS 1-equivariant Willmore tori inS 3. TU Berlin (Preprint 1989)Google Scholar
  27. 27.
    Ferus, D., Pedit, F., Pinkall, U., Sterling, I.: Minimal tori inS 4. Preprint TU Berlin, 261 (1990)Google Scholar
  28. 28.
    Ford, L.R.: Automorphic functions. New York: McGraw-Hill 1929Google Scholar
  29. 29.
    Forest, G., McLaughlin, D.: Spectral theory for the periodic sine-Gordon equation: a concrete viewpoint. J. Math. Phys.23, 1248–1277 (1982)Google Scholar
  30. 30.
    Hitchin, N.S.: Harmonic maps from a 2-torus to the 3-sphere. J. Diff. Geom.31, 627–710 (1990)Google Scholar
  31. 31.
    Hopf, H.: Differential geometry in the large. (Lect. Notes Math., vol. 1000) Berlin Heidelberg New York: Springer 1983Google Scholar
  32. 32.
    Kozel, V.A., Kotlyarov, V.P.: Quasi-periodic solutions of the equationU ttU xx+sinU=0. Dokl. Akad. Nauk Ukr. SSR10A, 878–881 (1976)Google Scholar
  33. 33.
    Lawson, H.B. Jr.: Complete minimal surfaces inS 3. Ann. Math.92, 335–374 (1970)Google Scholar
  34. 34.
    Li, P., Yau, S.T.: A new conformal invariant and its application to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math.69, 269–291 (1982)Google Scholar
  35. 35.
    Matveev, V.B.: Abelian functions and solitons. Preprint 373 Univ. of Wroclaw, Wroclaw 1976Google Scholar
  36. 36.
    McKean, H.P.: The Sine-Gordon and Sinh-Gordon Equations on the Circle. Commun. Pure Appl. Math.34, 197–257 (1981)Google Scholar
  37. 37.
    Natanzon, S.M.: Module spaces of real curves. Tr. Mosk. Mat. O.-va37, 219–257 (1978)Google Scholar
  38. 38.
    Pinkall, U.: Hopf tori. Invent. Math.81, 379–386 (1985)CrossRefGoogle Scholar
  39. 39.
    Pinkall, U., Sterling, I.: Willmore surfaces. Math. Intell.9, 38–43 (1987)Google Scholar
  40. 40.
    Pinkall, U., Sterling, I.: On the classification of constant mean curvature tori. Ann. Math.130, 407–451 (1989)Google Scholar
  41. 41.
    Saveliev, M.V.: Classification problem for exactly integrable embeddings of two-dimensional manifolds and coefficients of the third fundamental forms. Teor. Mat. Fiz.60, 9–23 (1984)Google Scholar
  42. 42.
    Simon, L.: Existence of Willmore surfaces. In: Simon, L., Trudinger, N.S. (eds.) Miniconference on geometry and partial differential equations. Canberra 1985. (Proc. Cent. Math. Anal. Aust. Natl. Univ. 10, pp. 187–216) Canberra: 1986Google Scholar
  43. 43.
    Spruck, J.: The elliptic sinh-Gordon equation and the construction of toroidal soap bubbles. In: Hildebrandt, S., Kinderlehrer, D., Miranda, M. (eds.) Calculus of Variations and Partial Differential Equations. Proceedings, Trento 1986 (Lect. Notes Math., vol. 1340, pp. 273–301) Berlin Heidelberg New York: Springer 1988Google Scholar
  44. 44.
    Sym, A.: Soliton surfaces and their applications (Soliton geometry from spectral problems). In: Geometrical Aspects of the Einstein Equations and Integrable Systems (Lect. Notes Phys., vol. 239, pp. 154–231.) Berlin Heidelberg New York: Springer 1985Google Scholar
  45. 45.
    Walter, R.: Explicit examples to theH-problem of Heinz Hopf. Geom. Dedicata23, 187–213 (1987)Google Scholar
  46. 46.
    Walter, R.: Constant mean curvature tori with spherical curvature lines in noneuclidean geometry. Manuscr. Math.63, 343–363 (1989)Google Scholar
  47. 47.
    Weiner, J.L.: On a problem of Chen, Willmore et al. Indiana Univ. Math. J.27, 19–35 (1978)Google Scholar
  48. 48.
    Wente, H.C.: Counterexample to a conjecture of H. Hopf. Pac. J. Math.121, 193–243 (1986)Google Scholar
  49. 49.
    Wente, H.C.: Twisted tori of constant mean curvature inR 3. In: Tromba, A. (ed.) Seminar on new results in nonlinear partial differential equations (Aspects Math. vol. E10, pp. 1–36) Braunschweig Wiesbaden: Vieweg 1987Google Scholar
  50. 50.
    Willmore, T.J.: Total curvature in Riemannian geometry. Chichester: Ellis Horwood 1982Google Scholar
  51. 51.
    Zieschang, H.: Finite groups of mapping classes of surfaces. (Lect. Notes Math., vol. 875) Berlin Heidelberg New York: Springer 1981Google Scholar
  52. 52.
    Mumford, D.: Tata lectures on theta II. (Progr. Math., vol. 43) Boston: Birkhäuser 1984Google Scholar
  53. 53.
    Its, A.R.: Liouville theorem and inverse scattering problem. In: Differential geometry, Lie groups and mechanics. 6. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova33, 113–125 (1984)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • A. I. Bobenko
    • 1
  1. 1.Leningrad Branch of Steklov Mathematical InstituteLeningradUSSR

Personalised recommendations