Advertisement

Mathematische Annalen

, Volume 290, Issue 1, pp 109–128 | Cite as

Fields of characteristic 2 with prescribedu-invariants

  • P. Mammone
  • J. -P. Tignol
  • A. Wadsworth
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, A.A.: Structure of algebras. Am. Math. Soc. Coll. Pub. 24, Am. Math. Soc., Providence, R.I., 1961Google Scholar
  2. 2.
    Baeza, R.: Quadratic forms over semilocal rings. Lect. Notes Math. vol. 655. Berlin Heidelberg New York: Springer 1978Google Scholar
  3. 3.
    Baeza, R.: Comparingu-invariants of fields of characteristic 2. Bol. Soc. Bras. Mat.13, 105–114 (1982)Google Scholar
  4. 4.
    Mammone, P., Moresi, R.: A fieldk of characteristic 2 withu(k)=6. Commun. Algebra18, 1563–1567 (1990)Google Scholar
  5. 5.
    Mammone, P., Moresi, R., Wadsworth, A.:u-invariants of fields of characteristic 2. To appear in Math. Z.Google Scholar
  6. 6.
    Merkurjev, A.S.: Simple algebras over function fields of quadrics. Handwritten notes, 6pp, 1989Google Scholar
  7. 7.
    Moresi, R.: On a class of field admitting only cyclic extensions of prime power degree. Bol. Soc. Bras. Mat.15, 101–107 (1984)Google Scholar
  8. 8.
    Swan, R.:K-theory of quadric hypersurfaces. Ann. Math.122, 113–153 (1985)Google Scholar
  9. 9.
    Tignol, J.-P.: Réduction de l'indice d'une algèbre simple centrale sur le corps des fonctions d'une quadrique. Bull. Soc. Math. Belg. Sér. A,42, 735–745 (1990)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • P. Mammone
    • 1
  • J. -P. Tignol
    • 2
  • A. Wadsworth
    • 3
  1. 1.Université de Mons-HainautMonsBelgium
  2. 2.Université Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Univerity of California at San DiegoLa JollaUSA

Personalised recommendations