Advertisement

Mathematische Annalen

, Volume 290, Issue 1, pp 19–30 | Cite as

The classC is not stable by small deformations

  • F. Campana
Article

Keywords

Small Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-H-S]
    Altiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four dimensional Riemannian geometry. Proc. R. Soc. Lond. A362, 452–461 (1978)Google Scholar
  2. [Be]
    Besse, A.: Einstein manifolds. (Erg. Math., 3. Folge, Bd. 10) Berlin Heidelberg New York: Springer 1987Google Scholar
  3. [C 1]
    Campana, F.: Compacité et algébricité dans l'espace des cycles. Math. Ann.251, 7–18 (1980)Google Scholar
  4. [C 2]
    Campane, F.: On twistor spaces in the classℰ J. Diff. Geom. (in press)Google Scholar
  5. [C 3]
    Campana, F.: Réduction algébrique d'un morphisme Kählérien propre et applications. Math. Ann.256, 157–189 (1981)Google Scholar
  6. [D-F]
    Donaldson, S.K., Friedman, R.: Connected sums of self-dual manifolds and deformations of singular spaces. Nonlinearity2, 197–239 (1989)Google Scholar
  7. [F]
    Friedman, R.: Simultaneous resolutions of bluefold double points. Math. Ann.274, 671–699 (1986)Google Scholar
  8. [G]
    Grauert, H.: Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen. Publ. Math. Hautes Etud. Sci.5, 1–64 (1960)Google Scholar
  9. [H 1]
    Hitchin, N.: Kählerian twistor spaces. Proc. Lond. Math. Soc.43, 133–150 (1981)Google Scholar
  10. [H 2]
    Hitchin, N.: Linear field equations on self-dual spaces. Proc. R. Soc. Lond., Ser. A370, 173–191 (1988)Google Scholar
  11. [Ho]
    Horikawa, E.: On deformations of holomorphic maps. III. Math. Ann.222, 275–282 (1976)Google Scholar
  12. [K-M-M]
    Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal problem. Algebraic geometry. Sendai 1985. Adv. Stud. Pure Math.10, 283–360 (1987)Google Scholar
  13. [K-S]
    Spencer, K.K.: On deformations of complex analytic structures. III. Ann. Math.71, 43–76 (1960)Google Scholar
  14. [K]
    Kurke, H.: Twistor spaces onn-CP 2. Preprint ErlangenGoogle Scholar
  15. [L]
    Lebrun, C.: Explicit self-dual metrics on (#n CP 2). Preprint PrincetonGoogle Scholar
  16. [P]
    Poon, S.: Algebraic dimension of twistor spaces. Math. Ann.282, 621–627 (1988)Google Scholar
  17. [P]
    Poon, S.: On twistor spaces admitting effective divisors of degree one (in preparation)Google Scholar
  18. [V]
    Ville, M.: Sur la dimension algébrique des espaces des twisteurs des variétés selfduales. PreprintGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • F. Campana
    • 1
  1. 1.Département de MathématiquesUniversité de Nancy 1Vandœuvre les Nancy CedexFrance

Personalised recommendations