Advertisement

Mathematische Annalen

, Volume 290, Issue 1, pp 3–18 | Cite as

\(\bar \partial \)-problem on weaklyq-convex domains

  • Lop-Hing Ho
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catlin, D.: Necessary conditions for subellipticity of the\(\bar \partial \)-Neumann problem on pseudoconvex domains. Ann. Math. (2)117, 147–171 (1983)Google Scholar
  2. 2.
    Catlin, D.: Subelliptic estimates for the\(\bar \partial \)-Neumann problem on pseudoconvex domains. Ann. Math. (2)126, 131–191 (1987)Google Scholar
  3. 3.
    D'Angelo, J.: Real hypersurfaces, orders of contact, and applications. Ann. Math. (2)115, 615–637 (1982)Google Scholar
  4. 4.
    Fischer, W., Lieb, I.: Lokale Kerne und beschränkte Lösungen für den\(\bar \partial \)-Opertaor aufq-konvexen Gebieten. Math. Ann.208, 249–265 (1974)Google Scholar
  5. 5.
    Henkin, G.M., Leiterer, J.: Andreotti-Grauert theory by integral formulas. Basel: Birkhäuser 1988Google Scholar
  6. 6.
    Ho, L.: Subellipticity of the\(\bar \partial \)-Neumann problem on nonpseudoconvex domains. Trans. Am. Math. Soc.291, 43–73 (1985)Google Scholar
  7. 7.
    Ho, L.: Subellipticity estimate for the\(\bar \partial \)-Neumann problem forn−1 forms. Trans. Am. Math. Soc., to appearGoogle Scholar
  8. 8.
    Hörmander, L.:L 2 estimates and existence theorems for the\(\bar \partial \)-operator. Acta Math.113, 89–152 (1965)Google Scholar
  9. 9.
    Hörmander, L.: An introduction to complex analysis in several variables. Princeton: Van Nostrand 1966Google Scholar
  10. 10.
    Kohn, J.J.: Global regularity for\(\bar \partial \) on weakly pseudoconvex manifolds. Trans. Am. Math. Soc.81, 273–292 (1973)Google Scholar
  11. 11.
    Kohn, J.J.: Subellipticity of the\(\bar \partial \)-Neumann problem on pseudoconvex domains: sufficient conditions. Acta Math.142, 79–122 (1979)Google Scholar
  12. 12.
    Kohn, personal communicationGoogle Scholar
  13. 13.
    Post, S.: Finite type and subelliptic estimates for the\(\bar \partial \)-Neumann problem. Ph.D. thesis, Princeton University, Princeton, N.J., 1983Google Scholar
  14. 14.
    Schmalz, G.: Solution of the\(\bar \partial \)-equation with uniform estimates on strictlyq-convex domains with nonsmooth boundary. Math. Z.202, 409–430 (1989)Google Scholar
  15. 15.
    Shaw, M.: Global solvability and regularity for\(\bar \partial \) on an annulus between two weakly pseudoconvex domains. Trans. Am. Math. Soc.291, 255–267 (1985)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Lop-Hing Ho
    • 1
  1. 1.Department of MathematicsThe Wichita State UniversityWichitaUSA

Personalised recommendations