Advertisement

Mathematische Annalen

, Volume 267, Issue 1, pp 125–142 | Cite as

Orbifold-uniformizing differential equations

  • Massaki Yoshida
Article

Keywords

Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coxeter, H.S.M.: Regular complex polytope. Cambridge: Cambridge University Press 1974Google Scholar
  2. 2.
    Hirzebruch, F.: Arrangements of lines and algebraic surfaces. In: Arithmetic and geometry, Vol. II. Progress in Math. Vol. 36, pp. 113–140. Boston, Basel, Stuttgart: Birkhäuser 1983Google Scholar
  3. 3.
    Kaneko, J., Tokunaga, S., Yoshida, M.: Complex crystallographic groups II. J. Math. Soc. Japan34, 596–605 (1982)Google Scholar
  4. 4.
    Kato, M.: On uniformization of orbifolds (preprint)Google Scholar
  5. 5.
    Mostow, G.D.: Existence of nonarithmetic monodromy groups. Proc. Nat. Acad. Sci. USA78, 5948–5950 (1981)Google Scholar
  6. 6.
    Mostow, G.D.: Generalized Picard lattices arising from half-integral conditions (preprint)Google Scholar
  7. 7.
    Oda, T.: On Schwarzian derivatives in several variables. (In Japanese) Kokyuroku of R.I.M., Kyoto Univ.226 (1974)Google Scholar
  8. 8.
    Picard, E.: Sur les fonctions de deux variables independantes analogues aux fonctions modulaire. Acta Math.2, 114–126 (1883)Google Scholar
  9. 9.
    Terada, T.: Problème de Riemann et fonctions automorphes provenant des fonctions hypergéométriques de plusieurs variables. J. Math. Kyoto Univ.13, 557–578 (1973)Google Scholar
  10. 10.
    Terada, T.: Fonctions hypergéométriquesF 1 et fonctions automorpesI. J. Math. Soc. Japan35, 451–475 (1983)Google Scholar
  11. 11.
    Sasaki, T.: On the finiteness, of the monodromy group of the system of hypergeometric differential equations (F D). J. Fac. Sci. Univ. Tokyo24, 565–573 (1977)Google Scholar
  12. 12.
    Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Canad. J. Math.6, 274–304 (1954)Google Scholar
  13. 13.
    Thurston, W.: The geometry and topology of three-manifolds. Princeton Univ. (mimeographed notes 1978–1979)Google Scholar
  14. 14.
    Yamazaki, T., Yoshida, M.: On Hirzebruch's examples of surfaces withc 12=3c 2. Math. Ann.266, 421–431 (1984)Google Scholar
  15. 15.
    Yoshida, M.: Canonical forms of some systems of linear partial differential equations. Proc. Japan Acad.52, 473–476 (1976)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Massaki Yoshida
    • 1
  1. 1.Department of MathematicsKyushu University 33FukuokaJapan

Personalised recommendations