Mathematische Annalen

, Volume 267, Issue 1, pp 91–99 | Cite as

On the range of the radon transform and its dual

  • Alexander Hertle


These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Floret, K.: On well-located subspaces of distribution-spaces. Math. Ann.221, 147–151 (1976)Google Scholar
  2. 2.
    Gelfand, I.M., Graev, M.I., Vilenkin, N.Ya.: Generalized functions. V. New York: Academic Press 1966Google Scholar
  3. 3.
    Hahn, M., Quinto, E.T.: Distances between measures from 1-dimensional projections as implied by continuity of the inverse Radon transform. Preprint 1983Google Scholar
  4. 4.
    Helgason, S.: The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math.113, 153–180 (1965)Google Scholar
  5. 5.
    Helgason, S.: The Radon transform. Boston: Birkhäuser 1980Google Scholar
  6. 6.
    Helgason, S.: Ranges of Radon transforms. Proc. Symp. Appl. Math.27, 63–70 (1982). Providence, RI: Amer. Math. Soc. 1983Google Scholar
  7. 7.
    Hertle, A.: Continuity of the Radon transform and its inverse on Euclidean space. Math. Z.184, 165–192 (1983)Google Scholar
  8. 8.
    Hörmander, L.: Linear partial differential operators. Berlin, Heidelberg, New York: Springer 1963Google Scholar
  9. 9.
    Jarchow, H.: Locally convex spaces. Stuttgart: Teubner 1981Google Scholar
  10. 10.
    Komatsu, H.: Ultradistributions. I. J. Fac. Sci. Univ. Tokyo, Sec. IA20, 25–105 (1973)Google Scholar
  11. 11.
    Louis, A.K.: Orthogonal function series expansion and the null space of the Radon transform. SIAM J. Math. Anal. (1983)Google Scholar
  12. 12.
    Louis, A.K.: Picture reconstruction from projections in restricted range. Math. Meth. Appl. Sci.2, 209–220 (1980)Google Scholar
  13. 13.
    Ludwig, D.: The Radon transform on Euclidean space. Comm. Pure Appl. Math.19, 49–81 (1966)Google Scholar
  14. 14.
    Marr, R.B.: On the reconstruction of a function on a circular domain from a sampling of its line integrals. J. Math. Anal. Appl.45, 357–374 (1974)Google Scholar
  15. 15.
    Natterer, F.: Computerized tomography with unknown sources. SIAM J. Appl. Math.43, 1201–1212 (1983)Google Scholar
  16. 16.
    Perry, R.M.: On reconstructing a function on the exterior of a disc from its Radon transform. J. Math. Appl.59, 324–341 (1977)Google Scholar
  17. 17.
    Pietsch, A.: Nukleare lokalkonvexe Räume. Berlin, Heidelberg, New York: Springer 1965Google Scholar
  18. 18.
    Quinto, E.T.: Null spaces for the classical and spherical Radon transforms. J. Math. Anal. Appl.90, 408–420 (1982)Google Scholar
  19. 19.
    Quinto, E.T.: Singular value decomposition and inversion methods for the exterior Radon transform and a spherical transform. To appear J. Math. Anal. Appl. (1983)Google Scholar
  20. 20.
    Schaefer, H.H.: Topological vector spaces. Berlin, Heidelberg, New York: Springer 1971Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Alexander Hertle
    • 1
  1. 1.Fachbereich MathematikUniversität MainzMainzGermany

Personalised recommendations