Skip to main content
Log in

Primes in arithmetic progressions to large Moduli. II

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

p :

a prime number

Λ(n):

the von Mangoldt function

τ j (m):

the divisor function

ϕ(q):

the Euler function

μ(m):

the Möbius function

e(ζ):

the additive charactere 2πiζ

χ(n):

a multiplicative character

\(\hat f\) :

the Fourier transform off, i.e.,

$$\hat f(\eta ) = \int\limits_{ - \infty }^\infty {f(\xi )e(\xi \eta )d\xi }$$
m≡a(q) :

meansm≡a (modq)

\(\frac{{\bar d}}{c}\) :

meansa/c (mod 1) wheread≡1 (modc). Sums involving this symbol are restricted, often without explicit mention, to values of the variable for which the function summed is defined

m∼M :

meansM≦m<2M

∥α∥:

meansL 2 norm of α=(α m ), i.e., ∥α∥=(∑|α m |2)1/2

x :

a large number

ℒ:

logx

π(x; q, a):

the number of primesp≦x, p≡a(modq)

Ψ(x; q, a):

\(\sum\limits_{n \leqq x,n \equiv a(\bmod q)} {\Lambda (n)}\)

\(\sum\limits_{b(q)} {^* }\) :

means the summation over residue classesb(modq) with (b, q)=1

S(a, b; c):

means the Kloosterman sum\(\sum\limits_{m(c)} {^* } e((am + b\bar m)/c)\)

A :

arbitrary large, positive constant, not necessarily the same in each occurrence

B :

some positive constant, not necessarily the same in each occurrence

ε:

any sufficiently small, positive constant, not necessarily the same in each occurrence

References

  1. Bombieri, E.: On the large sieve. Mathematika12, 201–225 (1965)

    Google Scholar 

  2. Bombieri, E., Friedlander, J., Iwaniec, H.: Primes in arithmetic progressions to large moduli. Acta Math.156, 203–251 (1986)

    Google Scholar 

  3. Deshouillers, J.-M., Iwaniec, H.: Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math.70, 219–288 (1982)

    Google Scholar 

  4. Dress, F., Iwaniec, H., Tenenbaum, G.: Sur une somme liée à la fonction de Möbius. J. Reine Angew. Math.340, 53–58 (1983)

    Google Scholar 

  5. Elliott, P.D.T.A., Halberstam, H.: A conjecture in prime number theory. Symp. Math.4, 59–72 (1968–69)

    Google Scholar 

  6. Fouvry, E.: Répartition des suites dans les progressions arithmétiques. Acta Arith.41, 359–382 (1982)

    Google Scholar 

  7. Fouvry, E.: Autour du théorème de Bombieri-Vinogradov. Acta Math.152, 219–244 (1984)

    Google Scholar 

  8. Fouvry, E.: Théorème de Brun-Titchmarsh; application au théorème de Fermat. Invent. Math.79, 383–407 (1985)

    Google Scholar 

  9. Fouvry, E., Iwaniec, H.: On a theorem of Bombieri-Vinogradov type. Mathematika27, 135–172 (1980)

    Google Scholar 

  10. Fouvry, E., Iwaniec, H.: Primes in arithmetic progressions. Acta Arith.42, 197–218 (1983)

    Google Scholar 

  11. Friedlander, J., Iwaniec, H.: On Bombieri's asymptotic sieve. Ann. Scuola Norm. Super., IV. Ser.5, 719–756 (1978)

    Google Scholar 

  12. Friedlander, J., Iwaniec, H.: Incomplete Kloosterman sums and a divisor problem. Ann. Math.121, 319–350 (1985)

    Google Scholar 

  13. Heath-Brown, D.R.: Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math.34, 1365–1377 (1982)

    Google Scholar 

  14. Iwaniec, H.: Rosser's sieve. Acta Arith.36, 171–202 (1980)

    Google Scholar 

  15. Iwaniec, H.: A new form of the error term in the linear sieve. Acta Arith.37, 307–320 (1980)

    Google Scholar 

  16. Mardzanisvili, K.K.: The estimation of a certain arithmetic sum (in Russian). Dokl. Akad. Nauk. SSSR22, 391–393 (1939)

    Google Scholar 

  17. Shiu, P.: A Brun-Titchmarsh theorem for multiplicative functions. J. Reine Angew. Math.313, 161–170 (1980)

    Google Scholar 

  18. Vaughan, R.C.: Mean value theorems in prime number theory. J. Lond. Math. Soc.10, 153–162 (1975)

    Google Scholar 

  19. Vinogradov, A.I.: On the density hypothesis for DirichletL-functions. Izv. Akad. Nauk. SSSR Ser. Mat.29, 903–934 (1965); correction ibid. Vinogradov, A.I.: On the density hypothesis for DirichletL-functions. Izv. Akad. Nauk. SSSR Ser. Mat.30, 719–720 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSERC grant A5123

Supported by NSF grant MCS-8108814 (A02)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bombieri, E., Friedlander, J.B. & Iwaniec, H. Primes in arithmetic progressions to large Moduli. II. Math. Ann. 277, 361–393 (1987). https://doi.org/10.1007/BF01458321

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01458321

Keywords

Navigation