Mathematische Annalen

, Volume 69, Issue 4, pp 580–585 | Cite as

On the genesis of the middle product in Grassmann's extensive algebra

  • A. R. Schweitzer


Extensive Algebra Middle Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. *).
    See his „Geometrie der Kräfte” Leipzig (1908), p. 18, note. Timerding calls the middle product „allgemeines geometrisches Produkt”.Google Scholar
  2. *).
    Cf. Grassman, Gesammelte Werke, Ausdehnungslehre 1862, p. 240.Google Scholar
  3. *).
    Is ε is scalar and equal to +1 theni, j, k are equivalent to the well known matrices of Frobenius, Crelle's Journal, vol. 84 (1878), p. 62.Google Scholar
  4. ***).
    Sinceε 2=1; compare A. Buchheim, Proceedings of the London Mathematical Society, vol. 15 (1884), p. 97.Google Scholar
  5. *).
    Mathematische Annlen, l. c., p. 376.Google Scholar

Copyright information

© Springer-Verlag 1910

Authors and Affiliations

  • A. R. Schweitzer
    • 1
  1. 1.ChicagoU. S. A.

Personalised recommendations