Advertisement

Mathematische Annalen

, Volume 283, Issue 1, pp 121–137 | Cite as

Compactifications of ℂ3. II

  • Thomas Peternell
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-K] Altman, A., Kleiman, S.: Introduction to Grothendieck duality theory. (Lecture Notes in Math. Vol. 146). Berlin Heidelberg New York: Springer 1970Google Scholar
  2. [Ba-Ka] Barthel, G., Kaup, L.: Topologie des espaces complexes compactes singulières. Montreal Lectures Notes Vol. 80 (1982)Google Scholar
  3. [F] Fischer, G.: Complex analytic geometry. (Lecture Notes in Math., Vol. 538). Berlin Heidelberg New York: Springer 1976Google Scholar
  4. [Fu 1] Furushima, M.: Singular del Pezzo surfaces and analytic compactifications of 137-1. Nagoya Math. J.104, 1–28 (1986)Google Scholar
  5. [Fu 2] Furushima, M.: On complex analytic compactifications of ℂ3. Preprint des MPI Bonn (1987)Google Scholar
  6. [Fu 3] Furushima, M.: On complex analytic compactifications of ℂ3 (II). Preprint des MPI Bonn (1987)Google Scholar
  7. [Is 1] Iskovskij, V.A.: Fano 3-folds II. Math. USSR Isv.11 (3), 469–506 (1977)Google Scholar
  8. [Is 2] Iskovskij, V.A.: Algebraic threefolds with special regard to the problem of rationality. Proc. of the international congress of Math. 1983, 733–747 (1986)Google Scholar
  9. [Is-Šo] Iskovskij, V.A., Šokurov, V.V.: Biregular theory of Fano 3-folds. (Lecture Notes in Math., Vol. 732, 171–182). Berlin Heidelberg New York: Springer 1978Google Scholar
  10. [K-W] Kunz, E., Waldi, R.: Der Fuhrer einer Gorensteinvarietät. J. f. d. reine u. angew. Math.388, 106–115 (1988)Google Scholar
  11. [Mo] Mori, S.: Threefolds whose canonical bundles are not numerically effective. Ann. Math.116, 133–176 (1982)Google Scholar
  12. [P-S] Peternell, Th., Schneider, M.: Compactifications of 137-4. I. Math. Ann.280, 129–146 (1988)Google Scholar
  13. [S] van Straten, D.: Weakly normal surface singularities and their improvements. Thesis, Leiden (1987)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Thomas Peternell
    • 1
  1. 1.Mathematisches InstitutUniversität BayreuthBayreuthFederal Republic of Germany

Personalised recommendations