Advertisement

Mathematische Annalen

, Volume 283, Issue 1, pp 87–95 | Cite as

The open mapping and closed range theorems

  • B. Rodrigues
  • S. Simons
Article

Keywords

Open Mapping Range Theorem Close Range Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adasch, N., Ernst, B., Keim, D.: Topological vector spaces. Lecture Notes Math., Vol. 639. Berlin Heidelberg New York: Springer 1978Google Scholar
  2. 2.
    Baker, J.W.: Operators with closed range. Math. Ann.174, 278–284 (1967)Google Scholar
  3. 3.
    Browder, F.E.: Functional analysis and partial differential equations, J. Math. Ann.138, 55–79 (1959)Google Scholar
  4. 4.
    Dieudonné, J., Schwartz, L.: La dualité dans les espaces (F) et (LF). Ann. Inst. Fourier1, 61–101 (1949)Google Scholar
  5. 5.
    Köthe, G.: General linear transformations of locally convex spaces. Math. Ann.159, 309–328 (1965)Google Scholar
  6. 6.
    Köthe, G.: Topological vector spaces, I. Berlin Heidelberg New York: Springer 1969Google Scholar
  7. 7.
    Köthe, G.: Topological vector spaces, II. Berlin Heidelberg New York: Springer 1979Google Scholar
  8. 8.
    Mennicken, R., Sagraloff, B.: Characterizations of nearly-openness. J. Reine Angew Math.313, 105–115 (1980)Google Scholar
  9. 9.
    Mochizuki, N.: On fully complete spaces. Tôhoku Math. J., II. Ser.,13, 485–490 (1961)Google Scholar
  10. 10.
    Pták, V.: Completeness and the open mapping theorem. Bull. Soc. Math. France86, 41–74 (1958)Google Scholar
  11. 11.
    Robertson, W.: Completions of topological vector spaces. Proc. London Math. Soc.8, 242–257 (1958)Google Scholar
  12. 12.
    Schaefer, H.H.: Topological vector spaces. Berlin Heidelberg New York: Springer 1986Google Scholar
  13. 13.
    Treves, F.: Locally convex spaces and linear partial differential equations. Berlin Heidelberg New York: Springer 1967Google Scholar
  14. 14.
    Treves, F.: Topological vector spaces. Distributions and kernels. New York: Academic Press 1967Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • B. Rodrigues
    • 1
  • S. Simons
    • 2
  1. 1.Department of Mathematical SciencesLoyola UniversityNew OrleansUSA
  2. 2.Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations