Advertisement

Mathematische Annalen

, Volume 283, Issue 1, pp 65–86 | Cite as

A probabilistic proof and applications of Wiener's test for the heat operator

  • Kôhei Uchiyama
Article

Keywords

Heat Operator Probabilistic Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, H.: Heat balls and Fulks measures. Ann. Acad. Sci. Fen. Ser. A.I Math.10, 67–82 (1985)Google Scholar
  2. 2.
    Doob, J.L.: Classical potential theory and its probabilistic counterpart. Berlin Heidelberg New York: Springer 1984Google Scholar
  3. 3.
    Erdös, P.: On the law of the iterated logarithm. Ann. Math.43, 419–436 (1942)Google Scholar
  4. 4.
    Evans, L.C., Gariepy, R.F.: Wiener's criterion for the heat equation. Arch. Rat. Mech. Anal.78, 293–314 (1982)Google Scholar
  5. 5.
    Feller, W.: On the general form of the so called law of iterated logarithm. Trans. Amer. Math. Soc.54, 373–402 (1943)Google Scholar
  6. 6.
    Feller, W.: An introduction to probability theory and its applications. Vol. II, 2nd. edn. New York Wiley 1971Google Scholar
  7. 7.
    Fulks, W.: A mean value theorem for the heat equation. Proc. Amer. Math. Soc.17, 6–11 (1966)Google Scholar
  8. 8.
    Ito, K., McKean Jr., H.P.: Diffusion processes and their sample paths. Berlin Heidelberg New York: Springer 1965Google Scholar
  9. 9.
    Lamperti, J.: Wiener's test and markov chains. J. Math. Anal. Appl.6, 58–66 (1963)Google Scholar
  10. 10.
    Lévy, P.: Théorie de l'addition des variables aléatoires. Paris: Gautier-Villars 1937Google Scholar
  11. 11.
    Motoo, M.: Proof of the law of iterated logarithm through diffusion equation. Ann. Inst. Statis. Math.10, 21–28 (1959)Google Scholar
  12. 12.
    Petrovskii, I.: Zur ersten Randwertaufgabe der Wärmeleitungsgleichung. Compos. Math.1, 383–419 (1935)Google Scholar
  13. 13.
    Watson, N.A.: Thermal capacity. Proc. Lond. Math. Soc.37, 342–362 (1978)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Kôhei Uchiyama
    • 1
  1. 1.Department of MathematicsHiroshima UniversityHiroshimaJapan

Personalised recommendations