Mathematische Annalen

, Volume 263, Issue 2, pp 251–261 | Cite as

Local root numbers and Hermitian-Galois module structure of rings of integers

  • Ph. Cassou-Noguès
  • M. J. Taylor


Module Structure Root Number Local Root Local Root Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B-S]
    Borel, A., Serre, J.P.: Sur certains sous-groupes des groupes de Lie compacts. Comment. Math. Helv.27, 128–239 (1953)Google Scholar
  2. [CN]
    Cassou-Noguès, Ph.: Structure galoisienne des anneaux d'entiers. Proc. L.M.S.38, 545–576 (1979)Google Scholar
  3. [D]
    Deligne, P.: Les constantes locales de l'équation fonctionelle de la fonctionL d'Artin d'une représentation orthogonale. Invent. Math.35, 299–316 (1976)Google Scholar
  4. [F1]
    Fröhlich, A.: Arithmetic and Galois module structure for tame extensions. J. reine angew. Math.286–287, 380–440 (1976)Google Scholar
  5. [F2]
    Fröhlich, A.: Ergebnisse der Mathematik, Bd. 1, 3. Folge. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  6. [F3]
    Fröhlich, A.: Classgroups, in particular Hermitian classgroups (to appear)Google Scholar
  7. [F4]
    Fröhlich, A.: Module invariants and root numbers for quaternion fields of degree 4ℓr. Camb. Philos. Soc.76, 393–399 (1974)Google Scholar
  8. [F5]
    Fröhlich, A.: Root numbers for symplectic characters and hermitian Galois module structure. Astérisque24–25, Soc. Math. France (1975)Google Scholar
  9. [F6]
    Fröhlich, A.: Local Hermitian group modules. Quadratic form conference. Queen's papers on pure and applied maths. No. 46. Kingston, Ont. 1977Google Scholar
  10. [F7]
    Fröhlich, A.: Symplectic local constants and Hermitian Galois module structure. Algebraic Number Theory, Int. Symposium Kyoto 1976, ed. S. Ivanaga. Tokyo: Japan Soc. Promotion Science, 1977Google Scholar
  11. [F8]
    Fröhlich, A.: On parity problems. Sem. théorie des nombres. Univ. Bordeaux 1979Google Scholar
  12. [M]
    Martinet, J.: Character theory and ArtinL-functions. Algebraic number fields, ed. A. Fröhlich. London: Academic Press 1977Google Scholar
  13. [S]
    Serre, J.-P.: Représentations linéaires des groupes finis, 2ème édition. Paris: Hermann 1971Google Scholar
  14. [Te]
    Tate, J.: Local constants. Algebraic number fields, ed. A. Fröhlich. London: Academic Press 1977Google Scholar
  15. [T1]
    Taylor, M.J.: On Fröhlich's conjecture for rings of integers of tame extensions. Invent. Math.63, 41–79 (1981)Google Scholar
  16. [T2]
    Taylor, M.J.: A logarithmic approach to classgroups of integral group rings. J. Algebra66, 321–353 (1980)Google Scholar
  17. [W]
    Wall, C.T.C.: Norms of units in group rings. Proc. AMS29, 593–632 (1974)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Ph. Cassou-Noguès
    • 1
  • M. J. Taylor
    • 2
  1. 1.Department of MathematicsUniversity of BordeauxTalence CedexFrance
  2. 2.Trinity CollegeCambridgeEngland

Personalised recommendations